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Abstract. This paper develops a formal model of topological relations between 
a directed line segment (DLine) and a region in a two-dimensional space. Such 
model forms a foundation for characterizing movement patterns of an agent 
with respect to a region. The DLine-region relations are captured by the 9-
intersection for line-region relations with further distinction of the line’s 
boundary into two subparts (starting and ending points). This 9+-intersection 
distinguishes 26 topological DLine-region relations. The relations’ conceptual 
neighborhood graph takes the shape of a V-shaped tube, whose upper and lower 
halves are isomorphic to the conceptual neighborhood graph of 19 topological 
line-region relations. The conceptual neighborhood graph of the 26 DLine-
region relations is applied to the iconic representation of movement patterns 
that satisfy a qualitative condition. By manipulating such iconic representations, 
the movement patterns that satisfy complex conditions are easily deduced.  

1. Introduction 

Movement of an agent with respect to an area, such as entering, leaving, and going-
through, is modeled as a spatial relation between a directed line segment and a region. 
For instance, Figs. 1a and 1b illustrate two scenarios, going abroad from Germany 
and being blocked by the cell wall, by the combinations of a directed line segment and 
a region with different spatial relations. Similarly, how a person goes in and out of a 
room, a hazardous district, or any area of interest, is captured as a spatial relation 
between a directed line segment and a region. Among several types of spatial 
relations, topological relations are particularly important, because the topological 
relations capture how the agent moves between the inside and outside and how the 
agent crosses or touches the border, which are fundamental information when people 
conceptualize the movement. A model of such topological relations is, therefore, 
potentially useful for the information systems that concern spatio-dynamic behaviors, 
such as security monitoring systems, smart homes, mobile robots, and route 



navigation systems, where computers have to communicate qualitative information 
about spatial movement patterns with human users.  
   

 

 

 

 

 

 (a)  (b)  

Fig. 1. (a) A directed line segment starts from the inside and ends at the outside of a Germany-
shaped region, illustrating going abroad from Germany. (b) A directed line segment starts from 
the outside, touches the boundary, and ends at the outside of a cell-shaped region, illustrating 
being blocked by the region. 

The goal of this paper is to develop a formal model of topological relations 
between a directed line segment and a region embedded in a two-dimensional space. 
Spatial relations between a directed line segment and a region, including topological 
relations, have not systematically studied, even though there are many studies on 
spatial relations between two directed line segments (Schlieder 1995; Clementini and 
Di Felice 1998; Moratz et al. 2000; Kurata and Egenhofer 2006) and those between a 
non-directed line segment and a region (Egenhofer and Herring 1991; Mark and 
Egenhofer 1994). Our model, which stands on these existing studies, distinguishes a 
set of topological relations between a directed line segment and a region in a formal 
way. This relation set forms a foundation for characterizing the movement patterns of 
an agent with respect to a region. 

A non-branching, non-directed line segment is often called a line for short 
(Egenhofer and Herring (1991), Hadzilacos and Tryfona (1992), Clementini (1993), 
Paradias (1995), Schlieder (1995), Clementini (1998), Moratz (2000)). In contrast, 
this paper calls a non-branching directed line segment a DLine (Kurata and Egenhofer 
2006). Accordingly, a spatial relation between a DLine and a region is called a DLine-
region relation. 

The remainder of this paper is structured as follows: Section 2 reviews related 
work on topological relations. Section 3 develops a formal model of topological 
DLine-region relations. Based on this model Section 4 identifies the complete set of 
DLine-region relations in a two-dimensional space, which are then schematized by a 
conceptual neighborhood graph in Section 5. Section 6 applies the conceptual 
neighborhood graph to the iconic representation of the movement patterns that satisfy 
certain qualitative conditions and demonstrates some benefits of this representation. 
Finally, Section 7 concludes with a discussion of future problems.  

2. Related Work 

Topological relations are spatial relations that are invariant under topological 
transformations, such as translation, rotation, and scaling (Egenhofer 1989). 
Topological relations are considered highly influential for people’s conceptualizations 
of space (Lynch 1960; Egenhofer and Mark 1995b). Topological relations between 



two spatial objects (i.e., points, lines, and regions) and their lower-dimensional 
counterparts, time intervals, have been studied extensively, starting from Allen’s 
(1983) thirteen interval relations. Based on the point-set topology (Alexandroff 1961), 
the 4-intersection (Egenhofer and Franzosa 1991) formally captures topological 
relations between two spatial objects through the geometric intersections of the 
objects’ interiors and boundaries. The 9-intersection (Egenhofer and Herring 1991) 
further considers the intersections with respect to the objects’ exteriors. In this model, 
topological relations between two spatial objects A and B are characterized by the 9-
intersection matrix (Eqn. 1), where oA , A∂ , and −A  are A’s interior, boundary, and 
exterior while oB , B∂ , and −B  are B’s interior, boundary, and exterior, respectively. 
Based on the presence or absence of the 3×3 types of geometric intersections, the 9-
intersection distinguishes 19 topological relations between a line and a region in R2 
(Egenhofer and Herring 1991) and 43 topological relations between a complex line 
and a complex region in R2 (Schneider and Behr 2006).  
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Another variation of the 4-intersection distinguishes explicitly the disconnected 
subparts of the interval’s boundary or DLine’s boundary (i.e., its starting point and 
ending point), distinguishing 16 relations between two intervals in a temporal cycle 
(Hornsby et al. 1999) and 68 relations between two DLines in R2 (Kurata and 
Egenhofer 2006). 

A set of spatial relations is typically schematized by a conceptual neighborhood 
graph (Egenhofer and Al-Taha 1992; Freksa 1992a; Egenhofer and Mark 1995b; 
Papadias et al. 1995; Schlieder 1995; Hornsby et al. 1999; Egenhofer 2005; Van de 
Weghe and De Maeyer 2005; Kurata and Egenhofer 2006). In this graph, each node 
corresponds to a spatial relation and two nodes are linked if the corresponding 
relations are conceptual neighbors (Freksa 1992a). Different definitions of conceptual 
neighbors lead to different graphs. For instance, Egenhofer and Mark (1995a) derived 
two different conceptual neighborhood graphs of the 19 line-region relations based on 
the smooth-transition (Freksa 1992a), which requires the possibility of continuous 
transformation between the neighboring relations, and the minimum topological 
distance (Egenhofer and Al-Taha 1992), which requires minimum difference between 
the 9-intersection matrices of the neighboring relations. 

The conceptual neighborhood graph has been applied to the analysis of spatial 
predicates in natural languages (Mark and Egenhofer 1994; Shariff et al. 1998). These 
linguistic studies show that line-region relations are often associated with a spatial 
predicate that assumes a spatial movement along the line, such as going into. This 
implies that people may recognize a line segment by imposing a virtual movement on 
it, despite the lack of the line’s direction, just like such verbal expressions as “the 
mountain range goes from Mexico to Canada” evokes fictive motion (Talmy 1996).  



3. The 9+-intersection for Topological DLine-Region Relations 

This paper considers DLines that may curve, but have no loop. Such DLines are 
simple lines with direction, which is obtained through a continuous one-to-one 
mapping from [0, 1] to R2 (Schneider and Behr 2006). In the point-set topology 
(Alexandroff 1961), a simple line is considered a set of an infinite number of linearly 
aligned points, among which two distinctive end-points form the boundary and the 
other points form the interior. The exterior is the complement of the union of the 
boundary and the interior. Naturally, the interior, boundary, and exterior of a DLine 
are pairwise disjoint and jointly exhaustive in R2. A DLine categorizes its two end-
points into a starting point and an ending point, which are also called a tail and a 
head, respectively (Kurata and Egenhofer 2006).  

A single-component region is a connected, homogeneously two-dimensional 2-cell 
in R2 (Schneider and Behr 2006). A single-component region does not have two or 
more disconnected interiors, spikes, puncturing points, cuts, but may have holes. A 
multi-component region is the union of multiple disjoint single-component regions. In 
this paper, a region refers to a single-component region or a multi-component region. 
The interior, boundary, and exterior of a region are pairwise disjoint and jointly 
exhaustive in R2.  

Let D and R be a DLine and a region, respectively. Uppercase letters are used 
because they are considered point sets. In the 9-intersection (Egenhofer and Herring 
1991) their topological relation is captured through the geometric intersections of D’s 
three topological parts (i.e., interior °D , boundary D∂ , and exterior −D ) and R’s 
three topological parts (i.e., interior °R , boundary R∂ , and exterior −R ). These 3×3 
types of intersections are concisely represented by the 9-intersection matrix in Eqn. 2. 
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In our model, the intersections with respect to D’s boundary D∂  are further 
distinguished into the intersections with respect to D’s starting point Ds∂  and those 
with respect to D’s ending point De∂ . Accordingly, the 9-intersection matrix in 
Eqn. 2 is extended to the matrix in Eqn. 3, which is called the 9+-intersection matrix 
of the topological relation between the DLine D and the region R. 
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(3) 

 
In general, the 9+-intersection captures topological relation between two spatial 

objects A and B through the geometric intersections of all subparts of A’s interior, 
boundary, and exterior and all subparts of B’s interior, boundary, and exterior. The 
subparts of the interior, boundary, and exterior are determined by their 



disconnections. For instance, a single-component region with n holes has n + 1 
boundary subparts and n + 1 exterior subparts. On the other hand, we consider that a 
connected interior, boundary, or exterior consists of a single subpart. Accordingly, 
Eqn. 4 is the general form of the 9+-intersection matrix, where iAo , Ai∂ , and iA−  are 

the i-th subpart of A’s interior, boundary, and exterior while jBo , Bj∂ , and jB−  are 
the j-th subpart of B’s interior, boundary, and exterior, respectively.  
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For instance, the DLine-region relation in Fig. 2b and the DLine-DLine relation in 
Fig. 2c are captured by the 9+-intersection matrix shown in each figure.  

For simplification, the 9+-intersection matrices are represented by icons (Fig. 2b-
2c). These icons are based on the iconic representation of the 9-intersection matrix by 
Mark and Egenhofer (1994) (Fig. 2b). Each icon has 3×3 cells, which correspond to 
the matrix’s 3×3 elements. Each cell is marked out if the corresponding element is 
non-empty (¬φ). In our iconic representation, the icon’s columns and rows are 
partitioned if their corresponding topological parts have multiple subparts. For 
instance, when visualizing the 9+-intersection matrix of a DLine-region relation, the 
icon’s second row is partitioned (Fig. 2b), such that the upper and lower halves 
correspond to the intersections with respect to the DLine’s starting point and ending 
point, respectively. Similarly, for a DLine-DLine relation, both the second row and 
the second column of the icon are partitioned (Fig. 2c).  

 

Fig. 2. Sample configurations of (a) a line and a region, (b) a DLine and a region, and (c) two 
DLines, together with (a) the 9-intersection and (b-c) the 9+-intersection matrices which capture 
their topological relations. The icons visualize the pattern of these matrices.  

4. Set of Topological DL-Region Relations  

From the 19 topological line-region relations distinguished by the 9-intersection 
(Egenhofer and Herring 1991) we can derive a set of topological DLine-region 
relations through assigning directions to the lines. Among the 19 relations, twelve 
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relations (Figs. 3a-l) are invariant to the line’s direction, because the line’s two end-
points are located at the same part of the region, whereas seven relations (Fig. 3m-s) 
are variant to the line’s direction. From each direction-variant relation we can derive 
two DLine-region relations through assigning different directions to the line. As a 
result, 12 + 7 × 2 = 26 topological DLine-region relations are obtained (Fig. 4).  

 

      

      
(a) (b) (c) (d) (e) (f) 

      

      
(g) (h) (i) (j) (k) (l) 

       

       
(m) (n) (o) (p) (q) (r) (s) 

Fig. 3. Sample configurations of 19 topological line-region relations (Egenhofer and Herring 
1991), together with the patterns of the corresponding 9-intersection matrices. 

      

      
(a) (b) (c) (d) (e) (f) 

      

      
(g) (h) (i) (j) (k) (l) 

      

       
(m1) (n1) (o1) (p1) (q1) (r1) (s1) 

       

       
(m2) (n2) (o2) (p2) (q2) (r2) (s2) 

Fig. 4. Sample configurations of 26 topological DLine-region relations, together with the 
patterns of the corresponding 9+-intersection matrices. 



These 26 relations correspond to different patterns of the 9+-intersection matrices 
(Fig. 4). This indicates that the 9+-intersection distinguishes at least 26 DLine-region 
relations. Actually, there is no other DLine-region relation that the 9+-intersection 
distinguishes. This is proven with the aid of the constraints on the 9+-intersection 
matrix of DLine-region relations (Eqns. 6-14), which are derived systematically from 
the constraints on the 9-intersection matrix of line-region relations (Egenhofer and 
Herring 1991) considering the distinction of lines’ two end-points.  

• D’s exterior and R’s exterior intersect with each other. 

φ¬=∩ −− RD  (5) 

• If D’s interior is a subset of R’s closure then D’s both end-points must be a subset 
of R’s closure as well. 

φφφ =∩∂∧=∩∂→=∩° −−− RDRDRD es  (6) 

• D’s each end-point intersects at least one part of R. 

{ } φφ ¬=∩∂∧¬=∩∂∂°∈∃ − QDPDRRRQP es,,,  (7) 

• If D’s interior and R’s interior are disjoint then neither of D’s end-points can 
intersect with R’s interior. 

φφφ =°∩∂∧=°∩∂→=°∩° RDRDRD es  (8) 

• If D’s interior intersects with both R’s interior and exterior, then it must also 
intersect with R’s boundary. 

φφφ ¬=∂∩°→¬=∩°∧¬=°∩° − RDRDRD  (9) 

• D’s each end-point intersects one part of R. 

{ } { } φφ =∩∂∧¬=∩∂∂°∈∀∂°∈∃ −−
11111 \,,,,, QDPDPRRRQRRRP ss  

{ } { } φφ =∩∂∧¬=∩∂∂°∈∀∂°∈∃ −−
22222 \,,,,, QDPDPRRRQRRRP ee  (10) 

• R’s interior always intersects with D’s exterior. 

φ¬=°∩− RD  (11) 

• R’s boundary always intersects with D’s exterior.  

φ¬=∂∩− RD  (12) 

• D’s interior must intersects with at least one part of R. 

{ } φ¬=∩°∂°∈∃ − PDRRRP ,,  (13) 



The 9+-intersection matrix may have 212 = 4096 patterns, since it has 12 elements 
with two possible values (empty or non-empty). Among these 4096 patterns, 
however, only 26 patterns satisfy the constraints in Eqns. 6-14. These 26 patterns are 
exactly same as the matrix patterns in Fig. 4. This indicates that the 26 patterns in 
Fig. 4 are the complete set of topological DLine-region relations distinguished by the 
9+-intersection. 

 
In Fig. 4, the geometric configuration assigned to each DLine-region relation is 

merely an example. It is possible that other configurations, which are topologically 
different from the illustrated example, may also correspond to the same topological 
relation (Fig. 5). In this sense, the 26 topological relations categorize DLine-region 
configurations based on some topological characteristics (the presence or absence of 
12 types of intersections), but not on their topological equivalence. 

To describe the topological detail of DLine-region configurations, this paper also 
introduces an alternative notation by three-tuples, which trace the positions of a 
virtual agent moving along the DLine (Fig. 5a-c). The first and third element in each 
three-tuple represents the agent’s starting and ending positions, while the second 
element represents the sequence of the agent’s intermediate positions. I, B, E 
represent the positions in the region’s interior, boundary, and exterior, respectively. 

 

Fig. 5. Three configurations that correspond to the same DLine-region relation in Fig. 4i. 

With such three-tuple notations, Table 1 summarizes all DLine-region 
configurations that belong to the 26 DLine-region relations. This table indicates that 
17 DLine-region relations correspond to multiple configurations (i.e., they have 
multiple topological interpretations). 

Table 1. Sets of DLine-region configurations that belong to each DLine-region relations in Fig. 
4. Each set of configurations is described using the three-tuple notation, where [X] is an empty 
or X, Y* is an arbitrary number of Y, and Z|W is Z or W, but not both. 

Direction-Invariant Relations Direction-Variant Relations 
(a) (I, I, I) (m1) (I, I, B) 
(b) (I, IB[IB]*I, I) (m2) (B, I, I) 
(c) (I, IB[IB|EB]*E[BI|BE]*BI, I) (n1) (I, IB[IB]*[I], B) 
(d) (E, EB[IB|EB]*I[BI|BE]*BE, E) (n2) (B, [I][BI]*BI, I) 
(e) (E, EB[EB]*E,E) (o1) (I, IB[IB|EB]*E[BI|BE]*[B], B) 
(f) (E, E, E) (o2) (B, [B][IB|EB]*E[BI|EI]*BI, I) 
(g) (B, I, B) (p1) (I, IB[IB|EB]*E, E) 
(h) (B, [B]IB[IB]*, B), (B, [BI]*BI[B], B) (p2) (E, E[BI|BE]*BI, I) 
(i) (B, [B][IB|EB]*(IBE|EBI)[BI|BE]*[B], B) (q1) (B, [B][IB|EB]*I[BI|BE]*BE, E) 
(j) (B, [B]EB[EB]*, B), (B, [BE]*BE[B], B) (q2) (E, EB[IB|EB]*I[BI|BE]*[B], B) 
(k) (B, E, B) (r1) (B, [E][BE]*BE, E) 
(l) (B, B, B) (r2) (E, EB[EB]*[E], B) 
  (s1) (B, E, E) 
  (s2) (E, E, B) 

   
(a) (B, IBEBI, B) (b) (B, IBE, B) (c) (B, EBI, I) 



5. Conceptual Neighborhood Graphs for DL-Region Relations 

We schematize the 26 DLine-region relations graphically, using a conceptual 
neighborhood graph (Freksa 1992a). In this graph, each node corresponds to a spatial 
relation, and two nodes are linked if the corresponding relations are similar relations 
called conceptual neighbors. This paper considers that two DLine-region relations are 
neighbors if one relation can be derived from another relation by moving either 
starting point, interior, or ending point of the DLine while keeping the presence or 
absence of the intersections with respect to the others (Fig. 6a). This transformation is 
a subset of the smooth transitions (Egenhofer and Mark 1995a), which also includes 
the transformation by moving one part of the DLine without keeping the presence or 
absence of the intersections with respect to the others (Fig. 6b). 

 

 
 

  
 

 

  (a)    (b)   

Fig. 6. Smooth transitions between two DLine-region relations, derived by moving the DLine’s 
ending point from the region’s boundary to (a) interior and (b) exterior, respectively. In (b), the 
movement of the DLine’s ending point generates the intersection of the DLine’s interior and 
the region’s boundary. 

We identified 46 pairs of conceptual neighbors among the 26 DLine-region 
relations. By linking these neighbors, a conceptual neighborhood graph of the 26 
topological DLine-region relations is developed (Fig. 7). The graph is non-planar and 
drawn three-dimensionally on a V-shaped tube, such that links do not cross. Clearly, 
this graph schematizes DLine-region relations based on their similarity.  

 

Fig. 7. A conceptual neighborhood graph of the 26 topological DLine-regions. 

Fig. 8 shows the upper and lower halves of the conceptual neighborhood graph in 
Fig. 7. The relations with gray background in Fig. 8 correspond to the relations 
located at the top and bottom of the V-shaped tube in Fig. 7, respectively. 
Interestingly, the two subgraphs in Fig. 8 are isomorphic to the conceptual 
neighborhood graph of the 19 line-region relations (Fig. 9). Actually, the two 



subgraphs in Fig. 8 can be derived from the graph in Fig. 9 through assigning 
directions to the line in each relation. Since the line-region relations with gray 
background in Fig. 9 are variant to the line’s direction, different directions assigned to 
the lines yield different conceptual neighborhood graphs.  

 

 
 

 
Fig. 8. Upper and lower halves of the conceptual neighborhood graph in Fig. 7. The relations 
with gray background correspond to the relation located at the top and bottom of the graph in 
Fig. 7, respectively.  

 
Fig. 9. The conceptual neighborhood graph of the 19 line-region relations, derived under the 
same definition of conceptual neighbors. The relations with gray background are variant to the 
line’s direction. 



The conceptual neighborhood graph of the 26 DLine-Region relations in Fig. 7 has 
the following unique properties: 

• Pairs of vertically facing relations are derived from each other by exchanging 
upper and lower halves of the second row of the 9+-intersection matrices 
(essentially reversing the DLine’s direction). 

• Pairs of relations located symmetrically across the front-to-back line penetrating 
the V-tube’s center are derived from each other by flipping the 9+-intersection 
matrices horizontally (essentially reversing the region’s interior and exterior).  

• The number of different elements in the 9+-intersection matrix, called the 
topological distance (Egenhofer and Al-Taha 1992), is 1 between the horizontal 
neighbors and 2 between the other neighbors. This implies that the conceptual 
neighborhood graph in Fig. 7 cannot be obtained through linking all pairs of 
relations with minimum topological distance.  
 

6. Modeling Movement Patterns with Respect to a Region  

Topological DLine-region relations categorize the patterns of an agent’s movement 
with respect to a region. For instance, the DLine-region relation in Fig. 4p1 
corresponds to movement patterns that start from the region’s interior, cross the 
region’s boundary at least once, and end at the region’s exterior. Such categorization 
is useful, because it highlights the topological characteristic of movement which 
highly influences people’s conceptualization of movement, while abstracts less 
important detail. Another benefit of such categorization is that movement patterns that 
satisfy a certain qualitative condition, whose number is typically infinite, are captured 
by a finite set of DLine-region relations. For instance, a set of movement patterns that 
satisfy the qualitative condition, starting from the region’s interior, is represented by 
the set of seven DLine-region relations (Figs. 4a, 4b, 4c, 4m1, 4n1, 4o1, and 4p1). Such 
summarized expression makes it easy for computers to process people’s 
characterization of movement patterns. 

To visually represent a set of DLine-region relations, we introduce iconic 
representations (Figs. 10a-h), which superimpose the two subgraphs in Fig. 8. The set 
of marked nodes indicates the set of DLine-region relations. Some nodes are 
partitioned, such that their upper and lower halves correspond to the different 
relations in the upper and lower subgraphs at the same position (i.e., the relations 
located at the top and bottom of the V-shaped tube in Fig. 7). For instance, the icon in 
Fig. 10a shows the set of seven relations in Fig. 4a, 4b, 4c, 4m1, 4n1, 4o1, and 4p1, 
which corresponds to the previous condition, starting from the region’s interior. Here 
we consider ten basic qualitative conditions: (a) starting from interior, (b) starting 
from boundary, (c) starting from exterior, (d) crossing boundary, (d) ending at 
interior, (e) ending at boundary, (f) ending at exterior, and (g) crossing/touching 
boundary. The icons in Figs. 10a-h show the sets of DLine-region relations that 
represent all movement patterns satisfying each of these conditions. 

 



    
starting from interior starting from boundary starting from exterior crossing boundary 

(I,*,*) (B,*,*) (E,*,*) (*,*(IBE|EBI)*,*) 
(a) (b) (c) (d) 

    
ending at interior ending at boundary ending at exterior crossing/touching 

boundary 
(*, *, I) (*, *, B) (*, *, E) (*,*B*,*) 

(e) (f) (g) (h) 

Fig. 10. Marked nodes in each icon indicate the set of DLine-region relations that represent all 
movement patterns satisfying each qualitative condition. Each condition is also described by 
the three-tuple notation (Section 4) with a wildcard symbol *. 

The ten icons in Fig. 10a-h have the following unique properties: 

• DLine-region relations that correspond to each qualitative condition form a 
connected subgraph. This is because the movement patterns that satisfy each 
condition has certain topological similarity, while the conceptual neighborhood 
graph schematizes the DLine-region relations based on their topological 
similarities. 

• A non-directed condition, such as crossing boundary, yields a symmetric icon 
(Figs. 10d and 10h). 

• A pair of conditions, interchangeable by exchanging starting from and ending at 
yield a pair of icons with reversed partitions (Figs. 10a and 10e, Figs. 10b and 10f, 
and Figs. 10c and 10g). 

• A pair of conditions, interchangeable by exchanging interior and exterior, yields a 
pair of horizontally flipped icons with reversed partitions (Figs. 10a and 10c, and 
Figs. 10e and 10g). 
 
A merit of this iconic representation is that the set of movement patterns that 

satisfy a complex condition is derived through simple manipulations on the icons. For 
instance, Fig. 11a shows the intersection of the icons in Figs. 10a and 10g, whose 
result indicates that only one DLine-region relation corresponds to the movement 
patterns satisfying starting from interior and end at exterior (Fig. 4p1). Similarly, 
Figs. 11b-d show the union of two icons, the difference of two icons, and the 
complement of an icon, whose result correspond to the movement patterns satisfying 
starting from inside or ending at outside, starting from inside but not ending at 
outside, and not starting from inside, respectively. Such computation is particularly 
useful for integrating the qualitative characterizations of a movement pattern reported 
by multiple observers (e.g., different sensors).   



Fig. 11. Set operations on the icons for representing a set of DLine-region relations. 

The iconic representation is also applicable to the classification of the region’s 
boundary. For instance, the icon in Fig. 12a corresponds to an inapproachable 
boundary, like a prison’s wall, which people normally cannot cross or even stand on. 
Conversely, the icon in Fig. 12e corresponds to a freely crossable boundary, like the 
border between a city square and roads around the square. In this way, the regions’ 
boundaries can be graphically classified in terms of the movement patterns they 
accept (Fig. 12).   

 

  
 inapproachable non-crossable outward crossable  inward crossable fully crossable 

(a) (b)  (c) (d) (e)  

Fig. 12. Five types of regions’ boundaries in terms of the movement patterns they accept. 

7. Conclusion and Future Problems 

This paper distinguished 26 topological DLine-region relations based on the 9+-
intersection. A conceptual neighborhood graph of these 26 relations took the shape of 
a V-shaped tube except one node. The 26 DLine-region relations qualitatively 
categorize the patterns of an agent’s movement with respect to a region. It is a future 
question how to apply this model to the analysis of motional expressions in natural 
language (i.e., how people describes a movement), as well as the computer systems 
that communicate the information on spatial movement with human users, hopefully 
in a qualitative way. 

In the current model, we can tell whether an agent crosses or touches the boundary, 
but cannot describe how many times the agent crosses or touches the boundary, or 
whether the agent crosses or touches the boundary instantly or stepwise. Also, we 
cannot describe, if the DLine and the region are disjoint, whether the agent goes left 
of, right of, toward, or against the region, even though people often emphasize such 
information when describing movement. It is, therefore, a future question to extend 
the current model in a meaningful way, incorporating other topological properties of 
DLine-region relations, such as the number and dimension (point or interval) of 
intersections, as well as non-topological properties such as distance and direction 
between the DLine and the region.  
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(a) starting from inside and ending at exterior (b) starting from inside or ending at exterior 

\ =
 

=¬
 

(c) starting from inside but not ending at exterior (d) not starting from inside 



This paper did not discuss the composition of two DLine-region relations (Freksa 
1992b; Egenhofer 1994). We can consider two types of compositions: the 
composition of two DLine-regions relations with a common DLine (i.e., all possible 
relations between two regions R1 and R2 when the relation between a DLine D and R1 
and the relation between D and R2 are known) or that with a common region (i.e., all 
possible relations between two DLines D1 and D2 when the relation between D1 and a 
region R and the relation between D2 and R are known). The compositions of all pairs 
of 26 DLine-region relations yield two 26×26 composition tables, which will enrich 
the foundation of qualitative spatial reasoning.  

The 9+-intersection introduced in this paper provides a flexible and systematic 
framework for capturing topological relations between various spatial objects, 
including DLines, branching lines, regions with holes, and multi-component regions. 
The application of the 9+-intersections for other spatial relations is highly potential for 
enriching the formal model of space configurations and the foundation of qualitative 
spatial reasoning. 
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