

# Projection-Based Models for Capturing Human Concepts of Motions



Yohei Kurata and Hui Shi

SFB/TR 8 Spatial Cognition, Universität Bremen / {ykurata, shi}@informatik.uni-bremen.de

#### What are Projection-Based Models?

Projection-based models <sup>[1]</sup> are spatial models that projects **a frame of spatial reference** <sup>[2]</sup> onto a space, by which the arrangement of two or three spatial objects are distinguished



#### **Projection-Based Models and Motion Concepts**

Two types of projection-based models are potentially useful for modeling human concepts/expressions of movement



## Research Goal

To systematize the existing projection-based models and identify the missing models that are potentially useful for modeling motion concepts

In our perspective, this study consolidates a foundation of our project toward the natural dialogue-based interface of intelligent semi-autonomous wheelchairs



#### Systematization Criteria

#### 1. Geometric types of the referent / relatum



ected Region

Directed Region (R<sub>D</sub>)

[5]

[7]

(2000) Consistent rels of Detail. In

#### 2. Frame class distinguished by its orientation factor [2]



### Existing Projection-Based Models

| Model                                                | Frame                   |           | rent              | tum                             | ver                   | Code                                 |
|------------------------------------------------------|-------------------------|-----------|-------------------|---------------------------------|-----------------------|--------------------------------------|
| WOUEI                                                | Shape                   | Class     | Refe              | Rela                            | Vie                   | Name                                 |
| Single Cross <sup>[3]</sup>                          | •                       | relative  | Ρ                 | Ρ                               | Ρ                     | PrP <sub>1-8</sub>                   |
| Double Cross in [3]                                  | · · · · · • • · · · ·   | relative  | Ρ                 | P>                              | <2                    | PrP <sub>1-8</sub> 2                 |
| Double Cross in [4]                                  |                         | intrinsic | Ρ                 | L <sub>SD</sub>                 | _                     | PiL <sub>SD 3-12</sub>               |
| Dipole Calculus <sup>[5, 6]</sup>                    | 1                       | intrinsic | L <sub>SD</sub>   | ×2                              | -                     | L <sub>SD</sub> iL <sub>SD 0-2</sub> |
| Models of Cardinal<br>Directions [7]                 |                         | absolute  | Arbi-<br>trary    | Arbi-<br>trary                  | _                     | AaA <sub>1-8</sub>                   |
| Ternary Point Configura-<br>tion Calculus (TPCC) [8] |                         | relative  | Ρ                 | Ρ                               | Ρ                     | <b>PrP</b> <sub>1-24</sub>           |
| Bipartite Arrangements [9]                           | 1                       | intrinsic | L <sub>SD</sub>   | L <sub>SD</sub>                 | -                     | L <sub>SD</sub> iL <sub>SD 3-1</sub> |
| Star Calculus [10]                                   | <b>+</b> ;*;*           | absolute  | Ρ                 | Ρ                               | -                     | PaP <sub>1-4n</sub>                  |
| Oriented Point Relation<br>Algebra (OPRA) [11]       | ,₩                      | intrinsic | P <sub>D</sub>    | ×2                              | -                     | $P_{D}iP_{D1}n^2$                    |
| Ego Orientation [12]                                 |                         | intrinsic | Ρ                 | $P_D$                           | -                     | PiP <sub>D 1-n</sub>                 |
| Orientation Calculi [12]                             | ····                    | intrinsic | Ρ                 | L <sub>SD</sub>                 | _                     | PiL <sub>SD m-n</sub>                |
|                                                      |                         |           |                   |                                 |                       |                                      |
| For systematiza                                      | ation, projection-m     | odels are | e give            | n the                           | code                  | e names:                             |
|                                                      | ХуZ                     | d<br>m-n  |                   |                                 |                       |                                      |
|                                                      | Referent<br>Frame class |           | Nu<br>cor<br>Numb | mber of<br>nposes<br>er of fiel | units<br>one re<br>ds | that<br><u>elation</u>               |

### What Models Are Not Yet Developed?

| What mou                                                                                   |                                                                        | rer beveloped:                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Point-Referen                                                                              | t Models (Pyz                                                          | Z <sub>m-n</sub> d)                                                                                                                                                                                                                         |
| 🗸 PaP                                                                                      | √ PaL                                                                  | √ PaR (⊂ √ AaA)                                                                                                                                                                                                                             |
| √ PiP <sub>D</sub>                                                                         | √ PiL <sub>sD</sub>                                                    | × PrR <sub>D</sub>                                                                                                                                                                                                                          |
| √ PrP                                                                                      | × PrL                                                                  | × PrR                                                                                                                                                                                                                                       |
| These thr<br>motion c<br>(e.g., go to                                                      | ee are potentially<br>oncepts when the<br>othe front of the            | v useful for capturing <b>goal-oriented</b><br>ne landmark is linear or region-like<br>e door, go behind the table)                                                                                                                         |
| DLine-Relatur<br>√ PiL <sub>sp</sub>                                                       | n Models (XiL<br>× LiL <sub>sp</sub> (⊃ ^                              | -som-n <sup>d</sup> )<br>√ L <sub>sp</sub> iL <sub>sp</sub> ) × RiL <sub>sp</sub>                                                                                                                                                           |
| These tw<br>motion c<br>(e.g., go to                                                       | o are potentially<br>oncepts when th<br>oward the door, g              | useful for capturing path-centric<br>ne landmark is linear or region-like<br>to across the rug)                                                                                                                                             |
| Based<br>of mod<br>the mo                                                                  | on this idea, we a<br>dels that belong<br>odeling of a numb            | are currently developing a series<br>to <b>RiL<sub>SD</sub></b> and applying them to<br>ber of motion concepts <sup>[13]</sup>                                                                                                              |
| References<br>[1] Frank (1996) Qualitative Spati<br>Example. International Journal         | al Reasoning: Cardinal Directions<br>of Geographical Information Scien | as an [8] Moratz, Nebel, & Freksa (2003) Qualifative Spatial Reasoning ab<br>Relative Position: The Tradeoff between Strong Formal Properties                                                                                               |
| 262-290<br>[2] Levinson (1996) Language and<br>353-382<br>[2] Erokso (1002) Using Orienter | Space. Annual Review of Anthropolo                                     | Successful Reasoning about Route Graphs In: Spatial Cognition III, LN<br>2685, 385-400.<br>[9] Gottfried (2004) Reasoning about Intervals in Two Dimensions. In: IE:<br>International Conference on Systems. Man and Cyberretics, 5324-5332 |

ng about

ons

[11] Moratz, Dylla, & Frommberger (2005) A Re Adjustable Granularity. In: Workshop on Age

[13] Kurata & Shi (2008) Interpreting Motion Expressions in Route Instructions Using Two Projection-Based Spatial Models. To appear in: KI 2008, LNAI

lative Orientation Algebra with

nd Route Graphs: