Possible Relations and Expressions

Even though we can consider $3 \times 6 \times 6=108$ cabinet relations, only 29 relations are possible in the real world:

As shown above, most of the 29 cabinet relations can be mapped to simple positioning expressions in English.
For generality, we can consider an intermediate use of ontological concepts:

LEFT-OF
concept
[separate, (proceeds, within)]
 in the left side of (English) -no hidari-ni(Japanese)

Reasoning on Cabinet Relations

Converse of a cabinet relation can be derived by combining the converse of each element.
e.g., $r(A, B)=$ [separate, (proceeds, within)] $\rightarrow r(B, A)=$ [separate, (succeeds, includes)]

Similarly, compositions of two cabinet relations can be derived by combining the composition of each element pair.

Future Work

- To find justification for the proposed mapping between cabinet relations and positioning expressions
- To implement the above idea and test its applicability in a smart home environment

References

[1] Papadias, D., Sellis, T.: Spatial Reasoning Using Symbolic Arrays. In: International Conference GIS (1992)
[2] Cicerone, S., Felice, P.: Cardinal Directions between Spatial Objects: The Pairwise-Consistency Problem. Information Science 164, 165-188 (2004) [3] Kurata, Y., Shi, H.: Toward Heterogeneous Cardinal Direction Calculus: I In: KI 2009, LNCS 5803, pp. 452-459. (2009)
[4] Egenhofer, M., Herring, J.: Categorizing Binary Topological Relationships between Regions, Lines and Points in Geographic Databases. In: NCGIA
Technical Reports $91-7$ (1991) [5] Randell, D., Cuii, Z., Cohn, A.: A Spatial Logic Based on Regions and Connection. In: Knowledge Representation and Reasoning, 165-176(1992) [6] Allen, J.: Maintaining Knowledge About Temporal Intervals. Communications of the ACM 26, 832-843 (1983)

