Yohei Kurata

Ph.D. Candidate, Department of Spatial Information Science and Engineering
ykurata@spatial.maine.edu / Advisor: Max. J. Egenhofer

Identification of Spatial Relations

Since the tail and head of a DL segment are points, they cannot be connected to more than one part of another non-looped DL segment.

Accordingly, the first column, third column, first row, tail $\left(\begin{array}{ccc}\text { tall } \\ \neg \phi & \phi & \phi \\ \hline\end{array}\right)$ and third row in the matrix can contain at most one non-empty entry $(\neg \phi)$. tail
body
head $\left(\begin{array}{ccc}\neg \phi & \phi & \phi \\ \phi & \phi & \phi \\ \phi & \neg \phi & \phi\end{array}\right)$

Based on this constraint, we identified 68 spatial relations between two non-looped DL segments, which are schematized in the following two-layered graph:

Unique Characteristics of This Graph

Reasoning on Ternary Relations

For three $D L$ segments A, B, and C, if we know the relation between A and B ($R_{A B}$) and that between A and $C\left(R_{A C}\right)$, then the possible relations between A and $\mathrm{C}\left(R_{A C}\right)$ are determined by the following constraints:

Deriving Answers to the Initial Question

$R_{A B}$ and $R_{B C}$ as:

$$
R_{A B}=\left(\begin{array}{ccc}
\neg \phi & \phi & \phi \\
\phi & \phi & \phi \\
\phi & \neg \phi & \phi
\end{array}\right) \quad R_{B C}=\left(\begin{array}{ccc}
\phi & \neg \phi & \phi \\
\phi & \phi & \phi \\
\phi & \phi & \phi
\end{array}\right)
$$

Due to the previous constraints,
$R_{A C}$ is partially determined as:
$R_{A D}$ and $R_{D C}$ as:

$$
R_{A D}=\left(\begin{array}{ccc}
\phi & \phi & \phi \\
\phi & \phi & \phi \\
\phi & -\phi & \phi
\end{array}\right) R_{D C}=\left(\begin{array}{ccc}
\neg \phi & \phi & \phi \\
\phi & \phi & \phi \\
\phi & \phi & -\phi
\end{array}\right)
$$

Due to the previous constraints, $R_{A C}$ is partially determined as:

Thus, $R_{A C}$ must satisfy $\left(\begin{array}{lll}\phi & \phi & \phi \\ \phi & & \phi \\ \phi & \phi & \phi\end{array}\right)$, which has only two
possibilities among the 68 spatial relations:

In this way, knowledge about a network can be enriched from limited information by reasoning

For More Powerful Reasoning...

In the above example, if we know that A departs from A 's left side, the possible relation of $R_{A B}$ is limited to cross. This implies that such additional knowledge as left-side/right-side connections will be useful for knowledge as tet-side/right-side

We are, therefore, tackling with the refinement of our curren intersection-based model in order to realize more powerfu reasoning on the qualitative relations between DL segments.

