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Abstract 
Most spatial calculi target spatial relations between single-
type objects, whereas there are also a number of spatial 
models that distinguish spatial relations between objects in 
different domains. How to equip such cross-domain spatial 
models with reasoning capability is left as a research ques-
tion. As a first step, this paper develops a series of qualita-
tive spatial calculi based on the 9-intersection. The 9-
intersection distinguishes topological relations between var-
ious objects (points, lines, regions, bodies, etc.). We formu-
late two sorts of calculi: homogeneous 9-intersection calculi 
target the topological relations between single-type objects, 
while heterogeneous 9-intersection calculi can deal with 
multiple sets of topological relations between various com-
binations of objects. As the foundation of these calculi, 
composition tables and lists of converse relations are devel-
oped for various sets of topological relations in  and . 
For heterogeneous 9-intersection calculi, the sets of base re-
lations, composition tables, and list of converse relations are 
integrated, such that the algebraic framework of ordinary 
single-domain spatial calculi can be reused. Finally, the use 
of the new calculi is demonstrated. 
 
Keywords: qualitative spatial calculi, topological relations, 
cross-domain spatial models, 9-intersection, composition 
tables  

1. Introduction 
Qualitative spatial calculi provide reasoning capability for 
the models of spatial relations. With these calculi, for in-
stance, incompletely-observed spatial arrangements of ob-
jects can be disambiguated with regard to a specific set of 
spatial relations. Interestingly, most of existing qualitative 
spatial calculi target spatial relations between single-sort 
objects. For instance, Allen’s interval algebra [1], Region 
Connection Calculus [2], Cardinal Direction Calculus [3], 
and Double Cross Calculus [4] feature a set of relations be-
tween two intervals, two regions, two points, and three 
points, respectively. Such single-domain spatial calculi fit 
nicely into an algebraic framework (relation algebra or its 
family), since their operations are closed under the single 
set of spatial relations. On the other hand, spatial database 
communities have developed a number of spatial models 
that distinguish spatial relations between objects in differ-

ent domains. For instance, the 9-intersection [5] can distin-
guish the topological relations between a line and a region, 
in addition to the relations between two regions or those 
between two lines. In [6], the target of cardinal direction 
relations is extended to arbitrary combination of objects 
(points, lines, and regions). In [7], spatial arrangements of 
a path and a landmark are modeled as relations between a 
directed line and a region using a Double-Cross-like frame 
of spatial reference. How to equip such cross-domain spa-
tial models with reasoning capability is left as a research 
question. For instance, imagine a space where point-like 
objects, line-like objects, and region-like objects coexist. 
Given partial knowledge about their arrangement, can we 
disambiguate it? If this is possible by computation, the ap-
plicability of qualitative spatial calculi will be expanded 
considerably. 
 As a first step, this paper develops a series of qualitative 
spatial calculi based on the 9-intersection [5]. These 9-
intersection calculi consist of homogeneous 9-intersection 
calculi, which target a set of topological relations between 
single-type objects (e.g., line-line relations), and heteroge-
neous 9-intersection calculi, which can deal with multiple 
sets of topological relations between various combinations 
of objects (e.g., mixture of line-line, line-region, and re-
gion-region relations). We show that the algebraic frame-
work of ordinary single-domain spatial calculi can be 
reused for the heterogeneous 9-intersection calculi and, 
consequently, we can use existing reasoning tools of spa-
tial calculi, such as SparQ [8] and GQR [9], to conduct 
reasoning in the heterogeneous 9-intersection calculi. We 
expect that a similar approach achieves reasoning capabili-
ty in other cross-domain spatial models as well. 
 A secondary but important challenge of this paper is to 
develop composition tables for various combinations of to-
pological relations. The composition table of two topologi-
cal region-region relations in  is reported in [10], but the 
tables for other combinations are not fully developed yet. 
We therefore develop these composition tables i systemati-
cally with a small number of composition rules. 
 The remainder of this paper is organized as follow: Sec-
tions 2 and 3 summarize major concepts of qualitative spa-
tial calculi and the 9-intersection, respectively. Section 4 



develops the lists of converse relations and composition 
tables for various topological relations. Section 5 develops 
the 9-intersection calculi based on these lists and composi-
tion tables. Section 6 demonstrates the use of these calculi 
for qualitative spatial reasoning. Finally, Section 7 con-
cludes with a discussion of future problems. 

2. Qualitative Spatial Calculi 
Qualitative spatial calculi (and their lower dimensional 
counterparts, qualitative temporal calculi) have been stu-
died extensively in AI communities [11, 12]. In a broad 
sense, qualitative spatial calculi are the calculi formed by a 
set of spatial relations and operations on these relations. 
Typically, binary spatial calculi are equipped with two op-
erations, conversion (converse) and composition, in addi-
tion to set-theoretic operations. By conversion we can de-
rive the relation between  and  from the relation be-
tween  and , while composition enable us to derive 
possible relations between  and  from the relation be-
tween  and  and that between  and . Ternary spatial 
calculi also have counterparts of these operations [13]. 
This paper focuses on binary spatial calculi, since topolog-
ical relations are binary relations.  
 Normally each binary spatial calculus targets a jointly 
exclusive and pairwise disjoint set of spatial relations that 
may hold between two arbitrary objects in a spatial object 
domain  (points, regions, etc.), including an identity rela-
tion. These spatial relations are called base relations and as 
a set they are denoted .  
 In order to process incomplete knowledge about spatial 
relations, the set of all base relations that may hold be-
tween a pair of objects is treated as a unit of computation, 
called (general) relation. For instance, if the topological 
relations between two regions  and  are known to be 
disjointRR or meetRR, the relation between  and  is 
represented as {disjointRR, meetRR}. If nothing is known 
about the possible spatial relations between  and , the 
relation between  and  is represented by the set of all 
base relations in , which is called the universal relation 
and denoted U.  
 The set of all relations (essentially ’s power-set ) is 
denoted . The converse ∪ and the composition ; on  are 
defined based on those on  as equations 1-2. The set , 
together with its converse and composition operations 
closed under , gives rise to an algebra. Normally, a bi-
nary spatial calculus forms a non-associative algebra (or 
even its stronger version, a relation algebra or a semi-
associative algebra, depending on its associativity [12]). 
Actually, from an algebraic point of view, Ligozat and 
Renz [12] defined a qualitative binary spatial calculus as a 
tuple of a non-associative algebra and its weak representa-
tion. 

   ∪ ∪ (1) 

 , ;   ;
,

 (2) 

  The merit of such an algebraic treatment is that we can 
computationally disambiguate the relations between many 
objects by algebraic computation without paying attention 
to actual geometry of the objects. This problem corres-
ponds to a constraint satisfaction problem (CSP). The 
CSP’s key question is consistency checking, i.e., to identi-
fy the presence or absence of the variables that satisfy the 
given constraints. In spatial calculi, the variables and con-
straints correspond to spatial objects and their relations, re-
spectively. Through checking algebraic closeness of every 
scenario, we can detect invalid combinations of spatial re-
lations that cannot hold between the objects (or the absence 
of such combinations). By filtering them out, we can de-
rive the candidates for the possible combinations of spatial 
relations between the objects (although at this level we 
cannot guarantee that all of these candidates are geometri-
cally realizable). There are already some effective tools to 
support such constraint-based reasoning on user-defined 
spatial/temporal (e.g., SparQ [8] and GQR [9]). 

3. The 9-Intersection 
The 9-intersection [5] is a model of binary topological rela-
tions based on point-set topology [14]. This model has 
been studied extensively in spatial database communities, 
primarily because it applies to various combinations of ob-
jects systematically. In this model, the relations between 
two objects are distinguished by certain properties of inter-
sections between their topological parts (interior, boun-
dary, and exterior). The interior, boundary, and exterior of 
a spatial object , denoted °, ∂ , and , are defined as 
the union of all open sets contained in , the difference be-
tween ’s closure (i.e., the intersection of all closed point 
sets that contain ) and °, and the complement of ’s 
closure, respectively. The 9-intersection matrix in equation 
3 concisely represents the 3×3 parts’ intersections between 
two objects  and .  

 M ,
° ° ° ∂ °

∂ ° ∂ ∂ ∂
∂

 (3) 

 In the most basic approach, topological relations are dis-
tinguished by the presence or absence of these 3×3 inter-
sections. Thus, we consider two-valued 9-intersection ma-
trix whose element are either empty ( ) or non-empty 
( ). By the patterns of the two-valued 9-intersection ma-
trix, for instance, we can distinguish two point-point rela-
tions, three point-line relations, and eight line-line relations 
in a 1D Euclidian space  (figure 1). Note that by defini-
tion a point does not have an interior and the line’s boun-
dary refers to the set of its two endpoints. 
 The set of topological relations distinguished by the pat-
terns of two-valued 9-intersection is denoted    , 



where  and  are the domains of two objects ( : 
points, :simple lines, :simple regions, and :simple bo-
dies) and  is the space. For instance, ˗  refers to the 
set of topological line-line relations in  (figure 1d). Ta-
ble 1 summarizes the numbers of topological relations dis-
tinguished by the patterns of the two-valued 9-intersection 
matrix.  
  

    

    

 equalPP disjointPP  
(a)  

 
     

     

 disjointPL meetPL insidePL  
(b)  

 
     

     

 disjointLP meetLP containsLP  
(c)  

 
    

    

equalLL overlapLL disjointLL meetLL 
    

    

coversLL coveredByLL containsLL insideLL 
(d)  

Figure 1. Topological relations between points, lines, and their 
combinations in  distinguished by the patterns of the two-

valued 9-intersection.  
 

Table 1. Numbers of topological relations distinguished by the 
patterns of the two-valued 9-intersection matrix [15]. 

      

Point-Point 2 2 2 2 2 

Point-Line / Line-Point 3 3 3 3 3 

Point-Region / Region-Point – 3 3 – 3 

Point-Body / Body-Point – – 3 – – 

Line-Line 8 33 33 11 33 

Line-Region / Region-Line – 19 31 – 19 

Line-Body / Body-Line – – 19 – – 

Region-Region – 8 43 – 11 

Region-Body / Body-Region – – 19 – – 

Body-Body – – 8 – – 

4. Conversion and Composition  
Conversion and composition are fundamental operations of 
qualitative spatial calculi. This section develops these two 
operations for a variety of topological relations. 
 The converse of a relation  in     is a relation in 

   . For instance, the converse of containsRP in 
    (region-point relations) is insidePR in     

(point-region relations). We can derive the converse of a 
relation  in     simply by transposing ’s 9-
intersection matrix and finding the same pattern from the 
two-valued 9-intersection matrices that represent the rela-
tions in    . By repeating this process for every rela-
tion in    , we can obtain the converse list of    , 
denoted  CL   , which shows the mapping from 

    to     by conversion (e.g., table 2). 
 

Table 2. Converse list of topological point-line relations in  
(      ). 

 disjointPL meetPL insidePL 
 ∪ disjointLP meetLP cotainsLP 

 
 The composition of a relation  in     and a rela-
tion  in     is a subset of    . The composition 
table of two topological relation sets     and    , 
denoted  CT   , shows the mapping from   

    to     (the power-set of    ) by compo-
sition. In this study, we develop composition tables for the 
combination of topological relations between simple ob-
jects in  (i.e.,  CT   ,  CT   ,  CT   , …, 
 CT   ) and for those in  (i.e.,  CT   , …, 
 CT   ).  

 Given three objects , , and  ( , ,
), the following set-theoretic constraints, originally in-

troduced in [16] for deriving  CT   , always hold for 
the composition of the topological relation between  and 

 and that between  and :  
• ’s topological part  and ’s topological part  do 

not intersect if  has a topological part  that includes 
 but does not intersect with  or that includes  but 

does not intersect with ; and 
•   and  intersect if  has a topological part  that in-

tersects with  and is included in  or that intersects 
with  and is included in .  

By filtering all relations in     with these constraints, 
we obtain the candidates for the composition of the topo-
logical relation between  and  and that between  and 

. Each candidate is examined if they have geometric in-
terpretations. Then, the set of valid candidates are ap-
proved as the composition of the topological relation be-
tween  and  and that between  and . By repeating this 
process for every relation pair in       , we 
can develop the composition table of     and     



(i.e.,  CT    ). For instance, table 3 shows the com-
position table of line-line relations and line-point relations 
in  (i.e.,  CT   ) derived by this method.  
 
Table 3. Composition table of topological line-line relations and 

topological line-point relations in  (     ). 
 disjointLP meetLP containsLP 

equalLL disjointLP meetLP containsLP 

disjointLL ULP disjointLP disjointLP 

meetLL ULP disjointLP / meetLP disjointLP 

overlapsLL ULP ULP ULP 

coversLL disjointLP disjointLP / meetLP ULP 

coveredByLL ULP meetLP / containsLP containsLP 

containsLL disjointLP disjointLP ULP 

 
 According to our investigation, the previous two con-
straints are sufficient when developing the most composi-
tion tables (  CT   , …,  CT    and  CT   , …, 
 CT   ), but not  CT   —in this case, the derived 

composition candidates may have no geometric interpreta-
tion. For instance, imagine that there are three simple lines 

, , and , where  contains  and  crosses  (fig-
ure 2). Obviously,  cannot contain . The constraints in 
equation 4, however, do not exclude the composition can-
didate where  contains .  
 

 

Figure 2. The arrangements of three lines A, B, and C, from 
which we can conclude that A cannot contain C. 

 
 In general, when  contains/covers ,  cannot con-
tains/covers  if: 
•  directly links ’s interior and exterior (figure 3);  
•  directly links ’s interior and exterior; or 
•  covers  and  is inside of  (figure 4).  
We can tell from the given relations that the first two situa-
tions occur whenever the relation between  and  belong 
to the topological line-line relations not realizable in  
(i.e., the line-line relations other than equalLL, disjointLL, 
meetLL, overlapsLL, coversLL, containsLL, and insideLL). 
Thus, the previous condition is simplified as follows:  
• If LL ,  and the relation between  and  is 

neither equalLL, disjointLL, meetLL, overlapsLL, coversLL, 
containsLL, nor insideLL, then ° ; 

• If LL ,  and the relation between  and  is 
neither equalLL, disjointLL, meetLL, overlapsLL, coversLL, 
nor containsLL, then ° ; 

Similarly, the following two constraints hold: 

• If LL ,  and the relation between  and  is 
neither equalLL, disjointLL, meetLL, overlapsLL, coversLL, 
containsLL, nor insideLL, then ° ; and 

• If LL ,  and the relation between  and  
is neither equalLL, disjointLL, meetLL, overlapsLL, co-
versLL, nor containsLL, then ° .  

By adding these four constraints, we can successfully de-
rive the composition candidates that have geometric inter-
pretations and, accordingly, we can develop the composi-
tion table accordingly, we can develop the composition ta-
ble  CT   . 
  

Figure 3. Examples of arrangements where a line C directly con-
nects the interior and exterior of a line B. 

 

 
Figure 4. If a line A covers a line B and B is inside of a line C, 

then A cannot contain/covers C. 

5. 9-Intersection Calculi 
First, to conduct reasoning on topological relations be-
tween single-type objects, we introduce homogeneous 9-
intersection calculi. These calculi are defined for each ob-
ject domain and each space. The homogeneous 9-
intersection calculus for the object domain  and the space 

, denoted Homo9IC   , is formulated based on the fol-
lowing elements: 
• a set of base relations   ; 
• a converse list  CL   ; and 
• a composition table  CT   .  
These elements satisfy the requirements of ordinary qualit-
ative spatial calculi (non-associative algebra); that is, 
•    is jointly exclusive, pairwise disjoint, and contains 

an identity element; 
• the converse operation on    is closed under    

(i.e.,     ∪
  ); and 

• the composition operation on    is closed under 
   (i.e., ,      ;   ).  

Consequently, spatial reasoning can be conducted in an al-
gebraic framework. 
 Next, to conduct reasoning on topological relations be-
tween various combinations of objects, heterogeneous 9-
intersection calculi are introduced. These calculi are de-
veloped for each space. The heterogeneous 9-intersection 
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C
B

C
B

C

B
C

B
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calculus for the space , denoted Het9IC , have the ability 
to deal with all sorts of simple objects (points, simple lines, 
simple regions, and simple bodies) that  can contain. Na-
turally, if  is a d-dimension space, Het9IC  covers: 
• d+1 object domains , … , ; 
• (d+1)2 sets of topological relations    

, ,…,
; 

• (d+1)2 converse lists  CL    
, ,…,

; and 

• (d+1)3 composition tables  CT      
, , ,…,

 

For instance, Het9IC  covers: 
• two object domains:  and ; 
• four sets of topological relations:   ,   ,   , 

and   ; 
• four converse lists:  CL   ,  CL   ,  CL   , and 

 CL   ; and 
• eight composition tables:  CT   ,  CT   , 

 CT   ,  CT   , …,  CT   .  
These elements are integrated as follows. First, the gene-
ralized object domain  and the generalized base relations 

 are defined as follows:  
• ,…,  

• , ,…,  
 
Basically  refers to the relations between two arbitrary 
objects in , but it also contains an identity relation 
( ). The presence of an identity relation is a require-
ment of the calculi’s algebraic framework (non-associative 
algebra). This identity element is different from domain-
level identity elements . In Het9IC , for in-
stance,  contains , , and . We did 
not integrate these identity elements to prevent senseless 
compositions. For instance, ;  must be 
empty since the composition of a point-point relation and a 
line-line relation is impossible. However, 

;  by definition and, ac-
cordingly, it is not appropriate to substitute  by 

. Thus,  is considered a purely abstract relation 
with no geometric interpretation (i.e., ,  ,

). Then, we can consider  a jointly exhaustive and 
pairwise disjoint set of base relations, which is also a re-
quirement of the calculi’s algebraic framework. 
 Next, we integrate the relevant converse lists and com-
position tables. The integrated converse list  CL    is 
derived by concatenating the relevant converse lists 
 CL      and adding an item “ ∪ .” For 

instance, table 4 shows  CL   , which is derived from 
 CL   , …,  CL   . Similarly, the integrated compo-

sition table  CT    is derived by adjoining the rele-
vant composition tables  CT      and adding one 
row and one column about -related composition. For 

instance, table 5 shows  CT   , which is derived 
from  CT   , …,  CT   . 
  
 Table 4. Integrated converse list      (the highlighted 

part corresponds to      in Table 2). 
  ∪    ∪ 

equal equal  equalLL equalLL 

equalPP equalPP  disjointLL disjointLL 

disjointPP disjointPP  meetLL meetLL 

disjointPL disjointLP  overlapsLL overlapsLL 

meetPL meetLP  coversLL coveredByLL 

insidePL containsLP  coveredByLL coversLL 

disjointLP disjointPL  containsLL insideLL 

meetLP meetPL  insideLL containsLL 

containsLP insidePL    

 
Now we have: 
• an integrated set of base relations , which is jointly 

exclusive, pairwise disjoint, and contains an identity re-
lation; 

• an integrated converse list  CL   , which is 
closed under ; and 

• an integrated composition table  CT   , which is 
closed under .  

Consequently, it is expected that spatial reasoning on the 
topological relations between arbitrary objects in  can be 
conducted in an algebraic framework, just like we can do 
in ordinary single-domain spatial calculi. This will be 
demonstrated in Section 6. 

Simple Assessment of 9-Intersection Calculi 
Based on the converse lists and composition tables devel-
oped in Section 4, we developed seven basic calculi: 
Homo9IC   , Homo9IC   , Homo9IC   , 
Homo9IC   , Homo9IC   , Het9IC , and Het9IC . 
We conducted simple assessment of these calculi. 
 First, for the composition table of each calculus, we cal-
culated the crispness and the ratio of unique compositions 
(table 5). These two measures are used in spatial database 
studies for assessing the effectiveness of composition 
tables [17, 18]. We found that Het9IC  and Het9IC  
marked high crispness, but this result is not so meaningful 
because the integration of composition tables yields the in-
crease of relations not contained in each composition and 
increases the crispness. We also found that Homo9IC   ’s 
ratio of unique compositions was very low. This is because 
in many compositions the presence or absence of intersec-
tion between two lines’ interiors cannot be determined. 
Het9IC ’s ratio of unique compositions was also low, be-
cause its composition table has many empty cells that cor-
respond to impossible compositions.  



Table 5. Integrated composition table    (the highlighted part corresponds to    in Table 3; 
eq: equal, dj: disjoint, mt: meet, ov: overlap, cv: covers, cB: coveredBy, ct: contains, and in:inside).  

 eq eqPP djPP djPL mtPL inPL djLP mtLP ctLP eqLL djLL mtLL ovLL cvLL cBLL ctLL inLL 

eq eq eqPP djPP djPL mtPL inPL djLP mtLP ctLP eqLL djLL mtLL ovLL cvLL cBLL ctLL inLL 

eqPP eqPP eqPP djPP djPL mtPL inPL            

djPP djPP djPP djPP UPL UPL UPL            

djPL djPL      UPP djPP djPP djPL UPL UPL UPL djPL UPL djPL UPL 

mtPL mtPL      djPP UPP djPP mtPL djPL djPL 
mtPL UPL djPL 

mtPL 
mtPL 
inPL djPL inPL 

inPL inPL      djPP djPP UPP inPL djPL djPL UPL UPL inPL UPL inPL 

djLP djLP djLP UPL ULL 

djLL 
mtLL 
ovLL 
 cBLL 
inLL 

djLL  
mtLL 
ovLL 
cBLL 
inLL 

           

mtLP mtLP mtLP UPL 

djLL 
mtLL 
ovLL 
cBLL 
inLL 

eqLL  
mtLL  
ovLL 
cvLL  
cBLL 

ovLL 
cBLL  
inLL 

           

ctLP ctLP ctLP UPL 

djLL 
mtLL 
ovLL 
cBLL 
inLL 

ovLL  
cvLL  
ctLL 

ovLL  
cvLL  
cBLL  
ctLL  
inLL 

           

eqLL eqLL      djLP mtLP ctLP eqLL djLL mtLL ovLL cvLL cBLL ctLL inLL 

djLL djLL      ULP djLP djLP djLL ULL 

djLL  
mtLL  
ovLL
cBLL  

inLL

djLL  
mtLL 
ovLL 
cBLL 

inLL 

djLL 

djLL 
mtLL 
ovLL 
cBLL 

inLL 

djLL 

djLL  
mtLL 
ovLL 
cBLL  

inLL

mtLL mtLL      ULP djLP  
mtLP 

djLP mtLL 

djLL  
mtLL  
ovLL 
cvLL  
ctLL 

eqLL  
djLL 
mtLL  
ovLL 

cvLL  
cBLL 

djLL 
mtLL 
ovLL 
cBLL 
inLL 

djLL  

mtLL 

mtLL 
ovLL 

cBLL 
inLL 

djLL 
ovLL 
cBLL 

inLL 

ovLL ovLL      ULP ULP ULP ovLL 

djLL 
mtLL 
ovLL 
cvLL 

ctLL 

djLL  
mtLL  
ovLL
cvLL  

ctLL 

ULL 

djLL  
mtLL  
ovLL 
cvLL  

ctLL 

ovLL 

cBLL 
inLL 

djLL  
mtLL  
ovLL
cvLL  

ctLL 

ovLL

cBLL  
inLL 

cvLL cvLL      ULP mtLP 

ctLP 
ctLP cvLL 

djLL  
mtLL  
ovLL 
cvLL  
ctLL 

mtLL  
ovLL 
cvLL  

ctLL 

ovLL 
cvLL  
ctLL 

cvLL  

ctLL 

eqLL 
ovLL 

cvLL  
cBLL 

ctLL 
ovLL 

cBLL 
 inLL 

cBLL cBLL      djLP 
djLP 

mtLP ULP cBLL djLL djLL  
mtLL 

djLL  
mtLL  
ovLL 
cBLL  

inLL 

eqLL  
djLL 

mtLL  
ovLL 
cvLL  
cBLL 

cBLL  
inLL 

djLL  
mtLL  
ovLL 
cvLL  

ctLL 

inLL 

ctLL ctLL      ULP ctLP ctLP ctLL 

djLL  
mtLL  
ovLL 
cvLL  

ctLL 

ovLL 
cvLL  
ctLL 

ovLL 
cvLL  
ctLL 

ctLL 
ovLL 
cvLL  
ctLL 

ctLL 

eqLL  
ovLL 
cvLL  
cBLL 
ctLL 

inLL 

inLL inLL      djLP djLP ULP inLL djLL djLL 

djLL  
mtLL  
ovLL 
cBLL  

inLL 

djLL  
mtLL  
ovLL 
cBLL  

inLL 

inLL ULL inLL 

 



 Next, we examined the associativity of the compositions 
in each calculus (i.e., whether A; B ; C A; B; C  holds 
or not) (table 6). We found that Homo9IC    is not asso-
ciative, and accordingly Het9IC  as well. Alternatively, 
the compositions in these two calculi satisfy semi-
associativity (i.e., A; ; A; ;  holds). On the 
other hand, other five calculi are all associative. One ex-
ample of non-associativity in Homo9IC    is that 

LL; LL; LL LL  (equations 4-
6), but LL; LL ; LL LL  (equa-
tions 7-10). This conflict arises from the ambiguity of the 

pattern . In equation 4, this pattern is inter-

preted as diverge&cross&divergedByLL relation (see B and 
D in figure 5a), whereas in equation 6 this pattern is inter-
preted as overlapLL relation (see B and D in figure 5b). Un-
fortunately, the ambiguity of this pattern is an intrinsic 
problem of the 9-intersection.  

 LL; LL

LL

 (4) 

 LL;
LL

LL (5) 

 LL; LL; LL LL (6) 
 

 
LL; LL ; LL

LL LL ; LL
LL; LL LL; LL 

(7) 

 LL; LL LL (8) 
 LL; LL LL (9) 
 LL; LL ; LL LL (10) 
 

Table 6. Properties of 9-intersection calculi for  and . 
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Number of 
relations 2 8 2 33 8 17 94 

Crispness of  
compositions .375 .623 .375 .645 .623 .869 .910 

Ratio of 
unique  

composition 
.750 .422 .750 .080 .422 .553 .167 

Associativity √ √ √  √ √  
Semi-

Associativity √ √ √ √ √ √ √ 

   

  
(a) (b) 

Figure 5. Illustrations of (a) equation 5 and (b) equation 6. 

6. Examples 
This section demonstrates the application of the proposed 
9-intersection calculi for qualitative spatial reasoning. We 
start from Homo9IC    as the representative of homoge-
neous 9-intersection calculi.  
 In the Boston metropolitan area, there are four interstate 
highways; I-90, I-93, I-95, and I-495. Their actual network 
is like figure 6a, but here we consider a simplified network 
in figure 6b. Table 7 lists the topological relations between 
the highways in the simplified network. Imagine that we 
drive two of these four highways and observe their connec-
tions to other highways. For instance, figure 7a/b illustrates 
the knowledge obtained from the drive on I-90 and I-95/I-
93. Based on such knowledge, what can we say about the 
relations between the remaining two highways? With 
Homo9IC   , we can derive possible relations between 
unvisited highways from partial knowledge about the 
highway network.  
 

 
(a) (b) 

Figure 6. (a) Network of four interstate highways in the Boston 
metropolitan area and (b) its simplified version for experiment. 

 
Table 7. Topological relations between pairs of highways in the 

network of figure 6b. 
 I-90 I-93 I-95 I-495 

I-90 – divergesLL crossLL divergesLL 

I-93 divergedByLL – diverges 
&crossLL divergesLL 

I-95 crossLL divergedBy 
&crossLL – meet-at-

both-endsLL 

I-495 divergedByLL divergedByLL meet-at-
both-endsLL – 

  

 

(a) (b) 
Figure 7. Partial knowledge about the highway network, obtained 

through the drive on (a) I-90 and I-95 and (b)I-90 and I-93. 
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 For actual computation, we put the data of Homo9IC    
(   ,  CL   , and  CT   ) into SparQ [8] and cal-
culate all consistent scenarios under the constraint network 
that follows table 7 but replaces the relations between un-
visited highways by ULL. The computation result is shown 
in table 8. For each pair of unvisited highways we obtained 
4 to 28 possible relations. Each solution successfully con-
tained the actual relation in the network of figure 6b. 
 

Table 8. Possible relations between pairs of unvisited highways 
derived as algebraically-consistent scenarios. 

Unknown 
relation 

Derived solution  
(dv: diverges, dB: divergedBy) 

(I95, I495) All but equalLL, coversLL, coveredByLL, containsLL, insideLL 

(I93, I495) disjointLL, crossLL, divergesLL, diverges&crossLL 

(I93, I95) disjointLL, crossLL, divergesLL, diverges&crossLL 

(I90, I495) disjointLL, crossLL, divergesLL, diverges&crossLL 

(I90, I95) disjointLL, crossLL, divergesLL, diverges&crossLL 

(I90, I93) 

disjointLL, coversLL, coveredByLL, crossLL, meet LL, 
meet&crossLL, divergesLL, dv&crossLL, divergedByLL, 

dB&crossLL, dv&meetLL, dv&cross&meetLL, dB&meetLL, 
dB&cross&meetLL, dv&dBLL, dv&cross&dBLL, 

dv&dB&meetLL, dv&cross&dB&meetLL 

 
 For the scenario in figure 7a, we obtained four possible 
relations between I-93 and I-495—disjointLL, crossLL, di-
vergesLL, and diverges&crossLL. This solution look reason-
able, since we can say from the given knowledge that (i) 
both endpoints of I-495 do not intersect with I-93 and (ii) 
one endpoint of I-93 do not intersect with I-495. On the 
other hand, for the scenario in figure 7b, we obtained as 
many as 28 possible relations between I-95 and I-495, be-
cause from the given knowledge we can only say that I-95 
is neither contained nor covered by I-495 and vice versa.   
 Next, we enrich the previous map by adding two areas—
Boston city and the urban area (covering the Boston city). 
Their spatial arrangement is illustrated in figure 8. Imagine 
that we have driven three of the four highways and ob-
tained the knowledge about how the three highways con-
nect to other highways and two areas. Based on such 
knowledge, what can we say about the relation between the 
remaining highway and two districts? For instance, in fig-
ure 9a/b, how I-95/I-93 goes with regard to two districts? 
To solve this problem, we use Het9IC , since it concerns 
the following heterogeneous sets of topological relations: 
• topological line-line relations between the visited high-

ways; 
• topological line-region between the visited highways 

and the two areas; and 
• topological region-region relations between the two 

areas— RR , . 

 
In addition, we also use the following optional information 
to obtain finer solutions: 
• topological point-region relations between the highway 

junctions and the two areas; and 
• topological line-point relations between the visited 

highways and the highway junctions. 
 

 
Figure 8. Spatial arrangement of highways and two districts in 

the Boston metropolitan area. 
 

(a) (b) 
Figure 9. Partial knowledge about the highway network, obtained 

through the drive on highways except (a) I-95 and (b) I-93. 
  
 For actual computation, we put the data of Het9IC  in-
to SparQ and calculated all consistent scenarios under the 
constraints described above. We obtained 1 to 16 possible 
relations for each scenario (table 9). Each solution success-
fully contains the actual relations in the highway-district 
arrangement of figure 7a.  
 For the scenario in figure 9a, we obtained a solution in 
which I-95 goes through the urban area, and either goes 
through, touches, or avoids the Boston city. This solution 
looks reasonable, as we know that (i) both endpoints of I-
95 are out of the two districts and (ii) I-95 passes through 
the urban area. The solutions for I-90 and I-495 also look 
reasonable. The solution for I-93, however, looks strange. 
Even though both endpoints of I-93 are located out of the 
urban area (figure 9b), the derived solution does not filter 
out such unrealizable relations as LR I 93, Urban . 
This is because the current reasoning process does not use 
the commonsense knowledge that the line’s boundary con-
sists of two endpoints, but regard it simply as a point set1 

                                                           
1  On the other hand, in figure 9a, the possibility of 

LR I 95, Urban   is successfully excluded, because the da-
ta already tells that I-95’s boundary is completely contained in I-
495’s interior. 
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This indicates that we can still improve the reasoning mak-
ing use of the structural information of spatial objects. 
 
Table 9. Possible relations between an unvisited highway and two 

districts, derived as algebraically-consistent scenarios. 
Unknown  
relations 

Derived solution (gTLR: goThroughLR,  
gIBELR: goIntoThenBackToEdgeLR) 

[(I-495, Urban),  
  (I-495, Boston)] 

[gTLR, gTLR], [gTLR, touchLR], [gTLR, disjointLR], 
[touchLR, touchLR], [touchLR, disjointLR],  

[disjointLR, disjointLR] 

[(I-95, Urban),  
  (I-95, Boston)] [gTLR, gTLR], [gTLR, touchLR], [gTLR, disjointLR] 

[(I-93, Urban),  
  (I-93, Boston)] 

[gTLR, gTLR], [goIntoLR, goIntoLR],  
[goIntoLR, gTLR], [goIntoLR, gIBELR]  

[gIBELR, gTLR], [gIBELR, gIBELR] 

[(I-90, Urban),  
  (I-90, Boston)] [goInto, goInto] 

7. Conclusions 
This paper developed a series of qualitative spatial calculi 
based on the 9-intersection [5]. These calculi can be used 
for qualitative spatial reasoning on topological relations 
between various combinations of objects. Unlike many 
other calculi, the heterogeneous 9-intersection calculi are 
concerned with situations where multiple sorts of objects 
coexist in the same space. However, by integrating sets of 
base relations, composition tables, and converse lists, such 
heterogeneity is no longer an obstacle to conduct spatial 
reasoning in an algebraic framework.  
 In this work, we featured the 9-intersection because of 
its popularity in spatial database studies. However, the re-
cent extension of the 9-intersection, called the 9+-
intersection [15, 19], serves as a more flexible framework 
for modeling topological relations. For instance, the 9+-
intersection can distinguish the topological relations be-
tween two directed lines in , which can be mapped to 
temporal relations between two intervals [15]. Thus, if we 
extend the 9+-intersection into qualitative spatial calculi, 
the resulting 9+-intersection calculi will cover temporal 
calculi as well (e.g., Allen’s interval calculus [1]). In addi-
tion, the 9+-intersection calculi will support topological re-
lations between a directed line and a point/line/region in 

 and, accordingly, it will be useful for integrating know-
ledge about path-landmark arrangements collected by mo-
bile agents. We are planning to develop such 9+-
intersection calculi and provide a library of both the 9- and 
9+-intersection calculi on SparQ [8] and CASL [20] for 
public use. 
 Another interesting future topic is to develop qualitative 
spatial calculi that feature non-topological relations (say, 
cardinal direction relations, relative orientations, distance 
relations, etc.) between multi-domain objects. We expect 
that we can use similar integration techniques for the de-
velopment of such heterogeneous spatial calculi. 
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