A Strategy for Drawing a Conceptual Neighborhood Graph Schematically

Yohei Kurata
SFB/TR 8 Spatial cognition, Universität Bremen / ykurata@informatik.uni-bremen.de

Motivation

Conceptual Neighborhood Graph ${ }^{[1]}$ (CNG) is a diagram in which spatial/temporal relations are networked based on their similarity.
Well-designed CNGs highlight the symmetric structures of the relation set and, therefore, they are useful for schematizing the relations.
e.g, A CNG for 13 temporal relations [1]

However, how to design such schematic CNGs is not well discussed except the definitions of 'neighbors'.

Research Goal

To propose a strategy for arranging spatial relations in a CNG such that the CNG becomes schematic

This problem is essentially to optimize the spatial arrangement of relations in a graph under the following criteria:
-to place the symmetric relations at symmetric locations
-to avoid the crossing of links as much as possible
-if possible, to draw the graph in a two-dimensional plane

Note:

We use the 9^{+}-intersection ${ }^{[1]}$ for modeling spatial relations (topological relations), by which the relations are distinguished by the patterns of icons

Proposed Strategy
Example 1:
Relations between Two Regions in a Sphere
Determine the 'neighbors' (links) among the given set of relations R based

Example 2:
Relations between a Line and a Region in a Plane
 on the similarity

Step 2

Decide one or two 'symmetry concepts' C_{i}

Step 3

For each $C_{i j}$, identify R 's subset R_{i} that is self-symmetric with respect to C_{i} Then, among the relations in $\bigcap R_{j}$, identify the relation r^{*} that has the largest number of neighbors, and place $r^{\prime \prime}$ at $(0,0,0)$.

Step 4

Locate the relations in $R_{1} ¥\{r\}$ on the x-axis at ($a, 0,0$) $(a \in \boldsymbol{Z})$, such that the length of each link becomes two. Leave the relations that have no link with the other relations in R_{1}
In a similar way, locate the relations in $R_{2} \neq\{r\}$ on the y-axis.

Step 5

Locate all remaining relations at $(a, b, 0)(a, b \in \boldsymbol{Z})$ successively, such that: each relation is located at equal distance from its neighbors, whenever possible;
the remaining relations in R_{1} and R_{2} are located on the x - and y-axes, respectively; and
pairs of symmetric relations with respect to C_{1} and C_{2} are located symmetrically with respect to x - and y-axes, respectively.
 with each other and the total length of the links becomes the smallest

Future Work

- To examine the applicability of the proposed strategy to more complicated topological relations and other sorts of spatial relations
- To fully automate the above process

?

References

[1] Freksa (1992) Temporal Reasoning Based on Semi-Intervals. Artificial Intelligence 54, 199-227
[2] Egenhofer (2005) Spherical Topological Relations. Journal on Data Semantics III, 25-49
[3] Kurata \& Egenhofer (2007) The $9^{+}+$Intersection for Topological Relations between a Directed

