$\mathbf{9}^{+}$-Intersection Calculi for Spatial Reasoning on the Topological Relations between Heterogeneous Objects

We developed a series of qualitative spatial calculi that targets topological relations between mixed-type objects

Q.What are topological relations?
A. They are spatial relations that concern how two spatial objects connect and/or overlap

What is 9^{+}-Intersection?

9^{+}-intersection ${ }^{[1,2]}$ is a spatial model by which topological relations between two objects are distinguished by the black-and-white patterns of icons with 3×3 or more cells
This model is a refined version of the famous 9 -intersection model ${ }^{[3]}$

in a 2D Euclidian space \mathbf{R}^{2}, for instance, we can distinguish ${ }^{[2]}$:

Q.What are qualitative spatial calculi?
Q.Why do we consider mixed-type objects?
A. They are computational mechanisms for qualitative spatial reasoning
e.g., What relations are possible between A and C ?

Q. Can we solve such problems if there are many objects?

A. By preparing the following elements, we can solve the problems computationally: an object domain D

- a set of base relations \mathcal{B} between two objects in D
- a list of converse relations for \mathcal{B}
- a composition table for \mathcal{B}

$9^{+}-$Intersection Calculus

Let D_{1} and D_{2} be two object domains (e.g., R: regions, L: Lines, and P: Points) and $\mathcal{T}^{+}{ }_{\mathbf{D}_{1} \mathbf{D}_{2}-\mathcal{S}}$ be a set of topological relations between an object in D_{1} and an object in D_{2}, both embedded in a space S

Converse

Converse of a relation in $\mathcal{T}^{+} \mathbf{D}_{\mathbf{D}_{1} \mathbf{D}_{2}-\mathcal{S}}$ is a relation in $\mathcal{T}^{+}{ }_{\mathbf{D}_{2} \mathbf{D}_{1}-\mathcal{S}}$ who has a transposed icon pattern.

Let the list of converse of all relations in $\mathcal{T}^{+}{ }_{\mathbf{D}_{1} \mathbf{D}_{2}-\mathcal{S}}$ be $\mathrm{CL} \mathcal{T}^{+}{ }_{\mathbf{D}_{1} \mathbf{D}_{2} \delta}$

Composition

Under the 9^{+}-intersection, compositions of two arbitrary relations can be determined systematically by only four constraints (see our paper)
Let the composition table of relations in $\mathcal{T}^{+} \mathbf{D}_{1} \mathbf{D}_{2} \mathcal{S}$ and relations in $\mathcal{T}^{+}{ }_{\mathbf{D}_{2} \mathbf{D}_{3} \mathcal{S}}$ be CT- $\mathcal{T}^{+}{ }_{\mathbf{D}_{1} \mathbf{D}_{2} \mathbf{D}_{3}-\mathcal{S}}$

Integration

In order to conduct spatial reasoning within the existing framework of QSC, we consider a generalized object domain D^{*} and generalized base relations \mathcal{B}^{*} between two objects in D^{*} e.g., in the case of a 2D Euclidian space \mathbf{R}^{2} $\mathrm{D}^{*}=\mathrm{R} \cup \mathrm{L} \cup \mathrm{P}$ $\mathcal{B}^{*}=\left(\cup_{\mathbf{D}_{1}, \mathbf{D}_{2} \in\{\mathbf{R}, \mathbf{L}, \mathbf{P}\}} \mathcal{T}^{+}{ }_{\mathbf{D}_{1} \mathbf{D}_{2} \mathbb{R}^{2}}\right) \cup\left\{e q^{*}\right\}$

Then, the list of converse pairs in \mathcal{B}^{*} is derived by concatenating all relevant lists of converse relations $\mathrm{CL}-\mathcal{T}^{+}{ }_{\mathbf{D}_{1} \mathbf{D}_{2} s}\left(\mathrm{D}_{1}, \mathrm{D}_{2} \in\{\mathrm{R}, \mathrm{L}, \mathrm{P}\}\right)$ and adding an item that indicates the converse of eq* is eq*
Similarly, the composition table for \mathcal{B}^{*} is derived by adjoining all relevant composition tables $\mathrm{CT}-\mathcal{T}^{+} \mathbf{D}_{1} \mathbf{D}_{2} \mathbf{D}_{3} \mathcal{S}\left(\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3} \in\{\mathrm{R}, \mathrm{L}, \mathrm{P}\}\right)$ and adding a line/column for eq*

Now that we have prepared all of the above four elements of ordinary QSC, we can conduct qualitative spatial reasoning computationally by an existing QSC solver (say, SparQ ${ }^{[4]}$)
A. Existing qualitative spatial calculi target only single-type object relations

But in geographic contexts, we often deal with mixture of regions, lines, and points

An Example Application

Our spatial knowledge grows by everyday experience. From such imperfect knowledge, what spatial model we can build?

For instance, let's consider Boson's highway network, which consists of I-90, I-95, I-93, and I-495.
Imagine we have driven I-90, I-95, and I-495 and have the following knowledge:

From this knowledge, can we build a unique model of the highway network, just like the actual one?

If we use the 9^{+}-intersection calculi, we can deduce that the l-93 goes through both Boston's downtown \&f and urban area $<\}$ and there is no other solution

Similarly, when we consider the imaginary drive on three of the four highways, we can deduce the possible relations between unvisited highway and two areas as follows:

Unvisited highway x	Candidates for the relation pair [$(x$, downtown $\mathcal{F})$), (x, urban $\mathcal{\sim})$]
I-90E	
I-93S	[$O V{ }^{* \times}{ }_{\text {LR }}, O V^{* \times}{ }_{\text {LR }}$]
I-95S	
I-495S	$\left[d j_{\mathrm{LR}}, d j_{\mathrm{LR}}\right]\left[d j_{\mathrm{LR}}, m{ }^{* \times}{ }_{\mathrm{LR}}\right]$ $\left[d j_{L_{R}}, o v^{\alpha \times} x_{L R}\right]\left[m t^{x}{ }_{L R}, m t^{x}{ }_{L R}\right]$ [$\left.m{ }^{\star \times}{ }_{L R}, O \nu^{\Delta x}{ }_{L R}\right]\left[O V^{\alpha \times} x_{L R}, O v^{\alpha \times}{ }_{L R}\right]$

References

(1) Yohei Kurata and Max J. Egenhofer (2007) The 9+.Intersection for Topological Relations between
a Directed Line Segment and a Resion in a directed
Interpetation (BMIOT), Universitial Bremen TZ1 Techical Report 42, $62-76$.
[2] Kurata, Y. (2008) The 9+-Intersection: A Universal Framework for Modelit
In: GIScience 2008, LNCS 5266, 181-198
[3] Max J. Egenhoter and John R. Herring (1991) Cid between Regions, Lines and Points in Geographic Datatabases. In: NCGIA Techicical Reports $91-7$ (4) Jan Oliver Wallgrïn, Lutz Frommberger, Diedrich Wotler, Frank Dylla, and Christian Freksa
(2006) Oualitative Spatial Representation and Reasoning in (2006) Qualitation spatial Representation and Reasoning in the sparQ-Toolbox. In: Spati
Cogntion V. LNA 4387 . (5) Yohei Kurata (2009) 9-Intersection Calculi for Spatial Reasoning on the Topological

