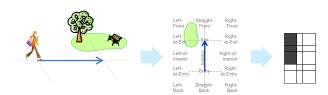
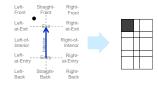


Reasoning on the Patterns of Spatial Arrangements between a Path and a Region-Like Landmark



Hui Shi and Yohei Kurata

SFB/TR 8 Spatial Cognition, Universität Bremen / {shi, ykurata}@informatik.uni-bremen.de


Research Goal

We develop a foundation of spatial reasoning on the patterns of path-landmark arrangements modeled by RfDL3-12

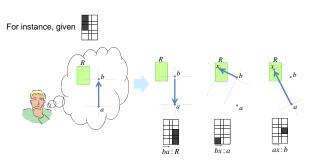
What is RfDL₃₋₁₂?

- The finest model in the RfDL model series [1], which consists of eight models that categorize the spatial arrangements between a straight path and a region-like landmark with different levels of granularities
- RfDL = Region-in-the-frame-of-Directed-Line
- RfDL3-12 considers left-right, front-side-back, and entry-interior-exit distinctions with respect to the path
 - → 3 fields on the path + 12 fields around the path
- Essentially, RfDL₃₋₁₂ is an extension of Double Cross [2]

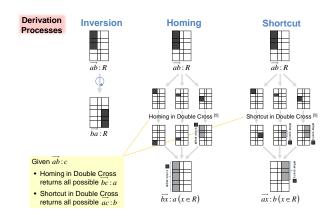
- RfDL₃₋₁₂ is useful for capturing the motion concepts that concern the direction and extent of the landmark as seen from the path [3, 4]
 - e.g., 'go toward ...', 'pass ... on the left', 'go until ... comes to the right', 'go across ...', 'go into ...', and 'go out of ...'

- [1] Kurata & Shi (2008) RfDL: Models for Capturing Directional and Topological Characteristics of Path-Landmark Arrangements. Workshop on
- [2] Freksa (1992) Using Orientation Information for Qualitative Spatial Reasoning. International Conference GIS, LNCS 639, 162-178. Springer [3] Kurata & Shi (2008) Interpreting Motion Expressions in Route Instructions Using Two Projection-Based Spatial Models. KI-2008
- [4] Shi & Kurata (2008) Modeling Ontological Concepts of Motions with Two Projection-Based Spatial Models. Workshop on Behavioral
- [5] Zimmermann & Freksa (1996) Qualitative Spatial Reasoning Using Orientation, Distance, and Path Knowledge, Applied Intelligence 6:49-58

Inversion, Homing, and Shortcut


I walked until a yard comes to my left. Now I got some questions:

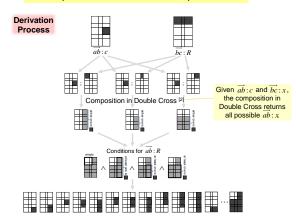
- i) If I turn back to the bus stop, in which direction I see the yard?
- If I walk toward somewhere in the yard, in which direction I see the bus stop?
- iii) If I walk toward somewhere in the yard directly from the bus stop, in which direction I would see my current location?


The answer to these questions are derived computationally by the inversion, **homing**, and **shortcut** of an RfDL₃₋₁₂ pattern $\overrightarrow{ab}:R$, respectively

Given $\overrightarrow{ab}: R$

- Inversion returns \overrightarrow{ba} : R
- Homing returns all possible \overrightarrow{bx} : $a(x \in R)$
- Shortcut returns all possible \overrightarrow{ax} : $b(x \in R)$

What other possibilities?


Composition

(i) Composition of a Double Cross Pattern and an RfDL₃₋₁₂ Pattern

The answer to this question is derived computationally by the composition of a Double Cross pattern \overrightarrow{ab} : c and an RfDL_{3,12} pattern \overrightarrow{bc} : R

The composition $\overrightarrow{ab}:c:\overrightarrow{bc}:R$ returns all possible $\overrightarrow{ab}:R$

(ii) Composition of Two RfDL₃₋₁₂ Patterns

The answer to this question is derived computationally by the composition of two RfDL₃₋₁₂ patterns $\overrightarrow{ab}: R_1$ and $\overrightarrow{bx}: R_2$ ($x \in R_1$)

The composition $\overrightarrow{ab}: R_1; \overrightarrow{bx}: R_2 (x \in R_1)$ returns all possible $\overrightarrow{ab}: R_2$

This composition is derived in the similar way as (i), considering the synthesis of the results of the Double Cross composition $\overrightarrow{ab}: x; \overrightarrow{bc}: y$ where x and y moves in R_1 and R_2 , respectively