Hui Shi and Yohei Kurata

SFB/TR 8 Spatial Cognition, Universität Bremen / \{shi, ykurata\}@informatik.uni-bremen.de

Research Goal

We develop a foundation of spatial reasoning on the patterns of path-landmark arrangements modeled by RfDL $_{3-12}$

What is RfDL $_{3-12}$?

- The finest model in the RfDL model series ${ }^{[1]}$, which consists of eight models that categorize the spatial arrangements between a straigh path and a region-like landmark with different levels of granularities
RfDL $=$ Region-in-the-frame-of-Directed-Lin
- RfDL_{3-12} considers left-right, front-side-back, and entry-interior-exit distinctions with respect to the path
$\rightarrow \mathbf{3}$ fields on the path $\mathbf{+ 1 2}$ fields around the path
- Essentially, RfDL_{3-12} is an extension of Double Cross ${ }^{[2]}$

- RfDL_{3-12} is useful for capturing the motion concepts that concern the direction and extent of the landmark as seen from the path ${ }^{[3,4]}$
e.g., 'go toward ...', 'pass ... on the left', 'go until ... comes to the right', 'go across ...', 'go into ...', and 'go out of ..'

I walked until a yard comes to my left
Now I got
i) If some questions:
i) I I turn back to the bus stop, in which direction I see the yard?
ii) If I walk toward somewhere in the yard, in
ii) If I wak the bus stop?
ii) If I walk toward somewhere in the yard
directly from the bus stop, in which
direction directly from the bus stop, in which
direction I would see my current location?

The answer to these questions are derived computationally by the inversion, homing, and shortcut of an RfDL_{3-12} pattern $a b: R$, respectively

Given $\overrightarrow{a b}: R$

- Inversion returns $\overrightarrow{b a}: R$
- Homing returns all possible $\overrightarrow{b x}: a(x \in R)$
- Shortcut returns all possible $\overrightarrow{a x}: b(x \in R)$

hat other possibilities?

Composition

(i) Composition of a Double Cross Pattern and an RfDL_{3-12} Pattern

The answer to this question is derived computationally by the composition of a Double Cross pattern $a b: c$ and an $\operatorname{RfDL}_{3.12}$ pattern $b c: R$

The composition $\overrightarrow{a b}: c ; \overrightarrow{b c}: R$ returns all possible $\overrightarrow{a b}: R$

(ii) Composition of Two RfDL $_{3-12}$ Patterns

The answer to this question is derived computationally by the composition of two RfDL_{3-12} patterns $a b: R_{1}$ and $b x: R_{2}\left(x \in R_{1}\right)$

The composition $\overrightarrow{a b}: R_{1} ; \overrightarrow{b x}: R_{2}\left(x \in R_{1}\right)$ returns all possible $\overrightarrow{a b}: R_{2}$
This composition is derived in the similar way as (i), considering the synthesis of the results of the Double Cross composition $\overrightarrow{b b}: x ; \overrightarrow{b c}: y$ where x and y moves in R_{1} and R_{2}, respectively

