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0. What I'm going to talk about

Loop-erased random walk on a graph (Lawler 1980)

Here we will call it the ‘standard’ LERW.
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0. What I'm going to talk about

Scaling limit of a loop-erased random walk
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What kind of process will we have as 6 — 07
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0. What I'm going to talk about

We consider this problem on the pre-Sierpinski gasket
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0. What I'm going to talk about

Method : a random fractal approach
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0. What I'm going to talk about

Result : In the scaling limit we get a continuous process,
whose path has no self-intersections but has infinitely
fine creases (dg > 1).
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Outline

1. Notations and two basic operations
2. Random fractal approach to LERW
3. Main results (scaling limit)

4. |dea of proof
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1-1. The pre-Sierpinski gaskets

The pre-Sierpinski gaskets : A series of finite graphs
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Fy : pre-SG with lattice spacing 27V

-N

b

Scaling limit (N — o0)
Fn — F . Sierpinski gasket (a fractal)
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1-2. Simple random walks on the pre-SG'’s

1 O
2

Xn(n) :SRW on Fy from O to a.
w . a sample path of Xy.

Xy, w)=w(), 1=0,1,---,{(w), w(0) = O, w(l(w)) =a

Random fractal approach : We erase loops in an
iterative manner using only two kinds of operations,

coarse-graining and loop-erasing on F;.
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1-3. Coarse-graining

Xy : SRW on Fy from O to a.

Q : Coarse-graining onto F; : Pick up F; vertices Xy
visits. If it visits a vertex more than once in a row, then
count only once.

QXy Isa SRW on Fy from O to a, that Is, Xj.

a a

count once
N
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1-4. Loop-erasing from SRW on F;

Two conditional SRW on F;.
a

a

o b
Py : the path measure of SRW not via b.
P} : the path measure of SRW via b.

1,1 1
For example, P;[w;] = (5)2(1)4/(5).
Conditioned
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L, : Loop-erasing operator on random walks on F;
(chronological).

O
F b b

Py =PioLY, Pr=P;oL;!: LERW measures
( P1[w’] is the probability to get a path w’ as a result of
loop-erasure.) Infinitely many paths result in a same path.

These probabilities can be calculated directly.
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Py =Py oL7! : LERW measure (SRW not via b)

1 4 R 2

Pqlwq] = > Pqlw,] = Pqlws] = 5/
Pi[ws] = Pilws] = Prlws] = o, Pilws] = —
1l = F1|W5s] = 1w6—30, 1 7—15,

Pi[w;1=0,i=8,9,10.
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2. Loop-erasing from SRW on  Fy

The random fractal approach : erase loops in
descending order of size. (not chronologically)
Q and L, are enough!
Stepal

WA o
b o)

a

the largest-scale
loop
(diam > 1/2)

O b
SRW on Fy Coarse-grained walk
(27N - lattice) (SRW on Fy)
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Step 2 Step 3

Erase loops from Qw Restore fine structure
a

Ey

L1 Qw

........................

wy has no loops with diam > 271,
%\
f% ?E The original path

O b
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Each 27! triangle is similar to Fy_;. Apply Step 1-3 to
each path segment and erase largest-scale (larger than
1/4) loops. Repeat until the path has no loops.

Similar to Fy_1

Similar to Fy_1

—_—
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Resulting loop-erased path. (After repetition of O and
L1)

- P\
AN

O b L . Loop-erasing operator

Yy = LXy : loop-erased random walk on Fy
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3. Main results

Theorem 1.

Yy - LERW on Fy.
As N — oo, Yn(AN- ) converges uniformly in ¢ to a
continuous process Y on the SG a.s.

Theorem 2.

Y Is almost surely self-avoiding.
The path Hausdorff dimension is
dLERW(Y([O/ 00))) = lOg /\/ lOgZ = 1.1939... > 1 a.s.

1
A= E(ZO + V205) = 2.2878....
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Theorem 3.

Our LERW has the same distribution as that of the
standard LERW (obtained by erasing loops
chronologically).

e Note that in general, erasing loops in a different order
results in a different stochastic process.
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4. ldea of proof

Proposition (branching)
Yn41 IS obtained from Yy by the following branching.
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Py =Py oL7! : LERW measure (SRW not via b)
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4-1. Path as a closed set

For a path w on the pre-SG or SG, define ox(w)
(K-skeleton of a path w) by the union of (closed)
2-K_triangles w passes through (entance # exit) .

(71(@0) D) Gz(ZU) D) (73(ZU) IDERE
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Fix K arbitrarily.
From our construction of branching into finer path,
forany N > K, ox(Yn) = ok(Yk), a.s..

37



%ﬂ @

vy ! oty oo(Ys)

GN(YN) D, GN+1(YN+1) 2 UN+2(YN+2) O---—>4A, a.s.

A 1s a random fractal with dg = log A/ log?2 a.s.
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4-2. Speed on the path

Count the numbers of 27V -triangles Yy passes through:

> > M
* »
! ’ : ’ y
X
N » * »
N v * »
* v 4 »
. > S A
................
X
X
X
X
X
X
X
X
X

sy = #{2~"-triangles of Type 1}

s, = {27 N-triangles of Type 2]
random variables
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= #{Type 1} : two vertices
= #{Type 2 } : three vertices

Number of steps : £V = s} + 257
(Time taken to go O — a.)
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(sy,s5) is a two-type branching process. ¢V = s)¥ + 25

Limit theorem of branching processes

fN
)\N

> AW >0, a.s.

A = (20 + V205) is chosen so that E[ 7] is
iIndependent of N.

This theorem garantees the convergence of crossing
time of any triangle.
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Summary

e The existence of the scaling limit of LERW.

e The path of the limiting process has infinitely fine
creases, while having no self-intersection.

e Our model and the standard LERW are the same.

e Shinoda, Teufl and Wagner obtained the scaling limit
iIndependently, by a different method (using uniform
spanning trees).
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Qo . Coarse-graining onto F

AbOVG, ((QOXN)(O)/ (QOXN)(l)/ (QOXN)(Z)) — (O/ b/ 61).
Conditional path measures

P11 ((QoXN)(0), (QuXwn)(1)) = (O, a).
Pi : ((QOXN)(O)/ (QOXN)(l)/ (QOXN)(Z)) — (O/ b, 61).

45



e The LERW belongs to a different universarity class
from SAW studied earlier (H., T. Hattori, Kusuoka).

log(20 + v205)/15

=1.1939...
log 2 ’

dLERW —

log(7 — V5)/2

=1.2521...
log 2 °

SAW —
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Generating functions

Wy : The set of loopless paths on Fy from O to g,
Py =PyolL™, P}, =P}, oL : LERW path measures

CI)N(x, y) — Z f)N(w) xSl(w) ysz(w),

we WN

On(x, y) = Z Pl (w) 01 @) 422@) e > 0.

ZUEWN
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Recursions

Proposition.
The recursion relations:

(DN+1(x/ y) — (Dl ((DN(X, y)/ ®N(x/ y))
Ons1(x, v) = O1(Py(x, v), On(x, v)), N €.

1
D(x,y) = %(15x2 + 8xy + y* + 2x%y + 4x°).

1
O1(x, y) = E(sz + 11xy + 2y* + 14x*y + 8x° + 5xy?).
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Mean matrix of the number of triangles

— %q)l(ll 1) aiyq)l(ll 1) —

M =
i %@1(1/ 1) %@1(1, 1) |

e BNGINe
Galoaenine

The larger eigenvalue

1
A=z(20+ V205) = 2.2878......

The average steps fromOtoaon Fy ~ AN (N — o)
(L(w) = s1(w) + 2s2(w)) n steps — time n

Need an appropriate time-scaling — Xy (AN- )

49 Xy : LERW on Fy



Loop-erasing from SRW on Fy

Erasing-larger-scale-loops-first rule.  (not chronologically)
Q and L; are enough for our loop-erasing (random

fractal approach).
Step 1. Coarse-grain onto F;

a a

count once
N

Note that if w has a loop with diameter larger than 1/2,

then Qqw has a loop.
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Step 2: Erase loop from Q;w.

a a

Step 3: Give back finer structure to LQqw.

Now all loops with diameter larger than 1/2, are gone.
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Similar to Fy_q

Similar to Fy_q

Each 27! triangles are similar to Fx_;. Apply the same
procedure to each path segment and erase the
largest-scale loops (larger than 1/4) loops. Repeat until
we have no loops. (Repetition of Q; and L.)
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A spanning tree on F3
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A spanning tree on Fj
The unique path O — a
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