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0. What I’m going to talk about

Loop-erased random walk on a graph (Lawler 1980)

O O

Erase loops in chronological order.
Here we will call it the ‘standard’ LERW.
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0. What I’m going to talk about

Scaling limit of a loop-erased random walk

　

δ 　
What kind of process will we have as δ→ 0?
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0. What I’m going to talk about

We consider this problem on the pre-Sierpinski gasket

　

1

a

O b

2−N

　

δ = 2−N → 0 ?
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0. What I’m going to talk about

Method : a random fractal approach

　

σ1(w)

a

bO O b

a

σ2(w) O b

a

σ3(w) 　
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0. What I’m going to talk about

Result : In the scaling limit we get a continuous process,
whose path has no self-intersections but has infinitely
fine creases (dH > 1).

a

bO 　
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Outline

1. Notations and two basic operations
2. Random fractal approach to LERW
3. Main results (scaling limit)
4. Idea of proof
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1-1. The pre-Sierpinski gaskets

The pre-Sierpinski gaskets : A series of finite graphs

　

F1

a

bO O b

a

F2
O b

a

F3

1
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1

a

O b

2−N

　
FN : pre-SG with lattice spacing 2−N

Scaling limit (N→∞)
FN −→ F : Sierpinski gasket (a fractal)
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1-2. Simple random walks on the pre-SG’s

1
4

1
4 1

2

1
2

O

a a

O

XN w

XN(n) :SRW on FN from O to a.
w : a sample path of XN.

XN(i, ω) = w(i), i = 0, 1, · · · , ℓ(w),w(0) = O,w(ℓ(w)) = a

Random fractal approach : We erase loops in an
iterative manner using only two kinds of operations,
coarse-graining and loop-erasing on F1.
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1-3. Coarse-graining

XN : SRW on FN from O to a.
Q : Coarse-graining onto F1 : Pick up F1 vertices XN

visits. If it visits a vertex more than once in a row, then
count only once.
QXN is a SRW on F1 from O to a, that is, X1.

count once

O

a

b bO

a

Q
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1-4. Loop-erasing from SRW on F1

Two conditional SRW on F1.
a

O bF1

a

O b

w1

P1 : the path measure of SRW not via b.
P′1 : the path measure of SRW via b.

For example, P1[w1] = (
1
2

)2(
1
4

)4/(
1
2

). 　　　　　　　　　

　　　　　　　　　　　　　　　　Conditioned
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L1 : Loop-erasing operator on random walks on F1

(chronological).

　

w L1w = w′

−→

a

O b
F1

a

O b

P̂1 = P1 ◦ L−1
1 , P̂′1 = P′1 ◦ L−1

1 : LERW measures
( P̂1[w′] is the probability to get a path w′ as a result of
loop-erasure.) Infinitely many paths result in a same path.

These probabilities can be calculated directly.
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P̂1 = P1 ◦ L−1
1 : LERW measure (SRW not via b) 　

　 w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

P̂1[w1] =
1
2
, P̂1[w2] = P̂1[w3] =

2
15
,

P̂1[w4] = P̂1[w5] = P̂1[w6] =
1
30
, P̂1[w7] =

2
15
,

P̂1[wi] = 0, i = 8, 9, 10.
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P̂′1 = P′1 ◦ L−1
1 : LERW measure (SRW via b) 　

　 w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

P̂′1[w1] =
1
9
, P̂′1[w2] = P̂′1[w3] =

11
90
,

P̂′1[w4] = P̂′1[w5] = P̂′1[w6] = 2
45 , 　(b can be erased)

P̂′1[w7] =
8
45
, P̂′1[w8] =

2
9
, P̂′1[w9] = P̂′1[w10] =

1
18
.
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2. Loop-erasing from SRW on FN

The random fractal approach : erase loops in
descending order of size.　 (not chronologically)

Q and L1 are enough!
Step 1

O

a

b

Qww

a

O b

the largest-scale
loop
(diam ≥ 1/2)

　

SRW on FN Coarse-grained walk
(2−N - lattice) (SRW on F1)　
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Step 2 Step 3
Erase loops from Qw Restore fine structure

a

O b

a

O

L1Qw w1

b

w1 has no loops with diam > 2−1.

bO

a

The original path
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Each 2−1 triangle is similar to FN−1. Apply Step 1–3 to
each path segment and erase largest-scale (larger than
1/4) loops. Repeat until the path has no loops.

a

O

w1

Similar to FN−1

Similar to FN−1

b
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Resulting loop-erased path. (After repetition of Q and
L1)

O b

a

Lw

　L : Loop-erasing operator

YN = LXN : loop-erased random walk on FN
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3. Main results
Theorem 1.

YN : LERW on FN.
As N→∞, YN(λN· ) converges uniformly in t to a
continuous process Y on the SG a.s.

Theorem 2.

Y is almost surely self-avoiding.
The path Hausdorff dimension is
dLERW(Y([0,∞))) = logλ/ log 2 = 1.1939 . . . > 1 a.s.

λ =
1
15

(20 +
√

205) = 2.2878 . . ..
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Theorem 3.

Our LERW has the same distribution as that of the
standard LERW (obtained by erasing loops
chronologically).

• Note that in general, erasing loops in a different order
results in a different stochastic process.
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4. Idea of proof

Proposition (branching)
YN+1 is obtained from YN by the following branching.

P̂′1

P̂1

O

a

b O b

a

2−N

YN YN+1
P̂1

P̂′1

w1,w2, · · · ,w10
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P̂1 = P1 ◦ L−1
1 : LERW measure (SRW not via b)

w1 w2 w3 w4 w5

w6 w7 w8 w9 w10
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4-1. Path as a closed set
For a path w on the pre-SG or SG, define σK(w)
(K-skeleton of a path w) by the union of (closed)
2−K-triangles w passes through (entance , exit) .
σ1(w) ⊃ σ2(w) ⊃ σ3(w) ⊃ · · ·

　 σ1(w)

a

bO O b

a

σ2(w) O b

a

σ3(w)
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P̂′1

P̂1

O

a

b O b

a

2−K

Fix K arbitrarily.
From our construction of branching into finer path,
for any N ≥ K, σK(YN) = σK(YK), a.s..
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σ1(Y1)

a

bO O b

a

σ2(Y2) O b

a

σ3(Y3)

σN(YN) ⊃ σN+1(YN+1) ⊃ σN+2(YN+2) ⊃ · · · → ∃ A, a.s.

A is a random fractal with dH = logλ/ log 2 a.s.
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4-2. Speed on the path

Count the numbers of 2−N -triangles YN passes through:

Type 1

Type 2

　
sN

1 = ♯{2−N-triangles of Type 1}

sN
2 = ♯{2−N-triangles of Type 2}

random variables
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sN
1 = ♯{Type 1} : two vertices

sN
2 = ♯{Type 2 } : three vertices

s2
1 = 2, s2

2 = 3

O

a

b F2

Number of steps : ℓN = sN
1 + 2sN

2
(Time taken to go O→ a.)
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(sN
1 , s

N
2 ) is a two-type branching process. ℓN = sN

1 + 2sN
2 .

Limit theorem of branching processes

ℓN

λN → ∃W > 0, a.s.

λ = 1
15 (20 +

√
205) is chosen so that E[ ℓ

N

λN ] is
independent of N.

This theorem garantees the convergence of crossing
time of any triangle.
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Summary

• The existence of the scaling limit of LERW.

• The path of the limiting process has infinitely fine
creases, while having no self-intersection.

• Our model and the standard LERW are the same.

• Shinoda, Teufl and Wagner obtained the scaling limit
independently, by a different method (using uniform
spanning trees).
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F0 F1
F0 F1 F2
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Q0 : Coarse-graining onto F0

O

a

b bO

a

Q0

Above, ((Q0XN)(0), (Q0XN)(1), (Q0XN)(2)) = (O, b, a).

Conditional path measures
P1 : ((Q0XN)(0), (Q0XN)(1)) = (O, a).
P′1 : ((Q0XN)(0), (Q0XN)(1), (Q0XN)(2)) = (O, b, a).
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• The LERW belongs to a different universarity class
from SAW studied earlier (H., T. Hattori, Kusuoka).

dLERW =
log(20 +

√
205)/15

log 2
= 1.1939 . . .

dSAW =
log(7 −

√
5)/2

log 2
= 1.2521 . . .
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Generating functions

ŴN : The set of loopless paths on FN from O to a,

P̂N = PN ◦ L−1, P̂′N = P′N ◦ L−1 : LERW path measures

ΦN(x, y) =
∑

w∈ŴN

P̂N(w) xs1(w) ys2(w),

ΘN(x, y) =
∑

w∈ŴN

P̂′N(w) xs1(w) ys2(w), x, y ≥ 0.
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Recursions
Proposition.
The recursion relations:

ΦN+1(x, y) = Φ1(ΦN(x, y),ΘN(x, y)).

ΘN+1(x, y) = Θ1(ΦN(x, y),ΘN(x, y)), N ∈N.

Φ1(x, y) =
1
30

(15x2 + 8xy + y2 + 2x2y + 4x3).

Θ1(x, y) =
1
45

(5x2 + 11xy + 2y2 + 14x2y + 8x3 + 5xy2).
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Mean matrix of the number of triangles

M =

 ∂
∂xΦ1(1, 1) ∂

∂yΦ1(1, 1)
∂
∂xΘ1(1, 1) ∂

∂yΘ1(1, 1)

 = [ 9
5

2
5

26
15

13
15

]
The larger eigenvalue

λ =
1
15

(20 +
√

205) = 2.2878 . . . .

The average steps from O to a on FN ∼ λN　(N→∞ )
(ℓ(w) = s1(w) + 2s2(w))　　　n steps→ time n

Need an appropriate time-scaling −→ XN(λN· )

XN : LERW on FN
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Loop-erasing from SRW on FN

Erasing-larger-scale-loops-first rule.　 (not chronologically)

Q and L1 are enough for our loop-erasing (random
fractal approach).
Step 1: Coarse-grain onto F1

count once

O

a

b bO

a

Q

Note that if w has a loop with diameter larger than 1/2,
then Q1w has a loop.
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Step 2: Erase loop from Q1w.

bO

a

bO

a

Step 3: Give back finer structure to LQ1w.

Now all loops with diameter larger than 1/2, are gone.
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Similar to FN−1

Similar to FN−1

　
Each 2−1 triangles are similar to FN−1. Apply the same
procedure to each path segment and erase the
largest-scale loops (larger than 1/4) loops. Repeat until
we have no loops. (Repetition of Q1 and L.)

52



　

O b

a

F3
　

A spanning tree on F3
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O b

a

F3
　

A spanning tree on F3

The unique path O→ a
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