Loop-erased random walk on a fractal – a random fractal approach

Kumiko Hattori (Tokyo Metropolitan University), joint work with Michiaki Mizuno

4

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Loop-erased random walk on a graph (Lawler 1980)

Erase loops in chronological order. Here we will call it the 'standard' LERW.

Scaling limit of a loop-erased random walk

We consider this problem on the pre-Sierpinski gasket

 $\delta = 2^{-N} \to 0 ?$

Method : a random fractal approach

Result : In the scaling limit we get a continuous process, whose path has no self-intersections but has infinitely fine creases ($d_H > 1$).

Outline

- 1. Notations and two basic operations
- 2. Random fractal approach to LERW
- 3. Main results (scaling limit)
- 4. Idea of proof

1-1. The pre-Sierpinski gaskets

The pre-Sierpinski gaskets : A series of finite graphs

 F_N : pre-SG with lattice spacing 2^{-N}

Scaling limit $(N \to \infty)$ $F_N \longrightarrow F$: **Sierpinski gasket** (a fractal)

1-2. Simple random walks on the pre-SG's

$$X_N(i,\omega) = w(i), \ i = 0, 1, \cdots, \ell(w), w(0) = O, w(\ell(w)) = a$$

Random fractal approach : We erase loops in an iterative manner using only two kinds of operations, coarse-graining and loop-erasing on F_1 .

22

1-3. Coarse-graining

 X_N : SRW on F_N from O to a. Q: Coarse-graining onto F_1 : Pick up F_1 vertices X_N visits. If it visits a vertex more than once in a row, then count only once.

 QX_N is a SRW on F_1 from O to a, that is, X_1 .

1-4. Loop-erasing from SRW on F_1

 L_1 : Loop-erasing operator on random walks on F_1 (chronological).

 $\hat{P}_1 = P_1 \circ L_1^{-1}, \, \hat{P}'_1 = P'_1 \circ L_1^{-1}$: LERW measures

($\hat{P}_1[w']$ is the probability to get a path w' as a result of loop-erasure.) Infinitely many paths result in a same path.

These probabilities can be calculated directly.

 $\hat{P}_1 = P_1 \circ L_1^{-1}$: LERW measure (SRW not via b)

$$\hat{P}_1[w_1] = \frac{1}{2}, \ \hat{P}_1[w_2] = \hat{P}_1[w_3] = \frac{2}{15},$$

$$\hat{P}_1[w_4] = \hat{P}_1[w_5] = \hat{P}_1[w_6] = \frac{1}{30}, \ \hat{P}_1[w_7] = \frac{2}{15},$$

 $\hat{P}_1[w_i] = 0, \ i = 8, 9, 10.$

26

 $\hat{P}'_1 = P'_1 \circ L_1^{-1}$: LERW measure (SRW via b)

$$\hat{P}_{1}'[w_{1}] = \frac{1}{9}, \ \hat{P}_{1}'[w_{2}] = \hat{P}_{1}'[w_{3}] = \frac{11}{90},$$
$$\hat{P}_{1}'[w_{4}] = \hat{P}_{1}'[w_{5}] = \hat{P}_{1}'[w_{6}] = \frac{2}{45}, \quad (b \text{ can be erased})$$
$$\hat{P}_{1}'[w_{7}] = \frac{8}{45}, \ \hat{P}_{1}'[w_{8}] = \frac{2}{9}, \ \hat{P}_{1}'[w_{9}] = \hat{P}_{1}'[w_{10}] = \frac{1}{18}.$$

2. Loop-erasing from SRW on F_N

The random fractal approach : erase loops in descending order of size. (not chronologically) Q and L_1 are enough!

29

b

Each 2^{-1} triangle is similar to F_{N-1} . Apply Step 1–3 to each path segment and erase largest-scale (larger than 1/4) loops. Repeat until the path has no loops.

Resulting loop-erased path. (After repetition of Q and L_1)

Theorem 1.

Y_N : LERW on F_N .

As $N \to \infty$, $Y_N(\lambda^N \cdot)$ converges uniformly in *t* to a continuous process *Y* on the SG a.s.

Theorem 2.

Y is almost surely self-avoiding. The path Hausdorff dimension is $d_{LERW}(Y([0,\infty))) = \log \lambda / \log 2 = 1.1939... > 1$ a.s.

$$\lambda = \frac{1}{15}(20 + \sqrt{205}) = 2.2878\dots$$

Theorem 3.

Our LERW has the same distribution as that of the standard LERW (obtained by erasing loops chronologically).

• Note that in general, erasing loops in a different order results in a different stochastic process.

4. Idea of proof

34

Proposition (branching)

 Y_{N+1} is obtained from Y_N by the following branching.

$\hat{P}_1 = P_1 \circ L_1^{-1}$: LERW measure (SRW not via b)

 w_6 w_7 w_8 w_9 w_{10}

4-1. Path as a closed set

For a path w on the pre-SG or SG, define $\sigma_K(w)$ (*K*-skeleton of a path w) by the union of (closed) 2^{-K} -triangles w passes through (entance \neq exit). $\sigma_1(w) \supset \sigma_2(w) \supset \sigma_3(w) \supset \cdots$

Fix *K* arbitrarily. From our construction of branching into finer path, for any $N \ge K$, $\sigma_K(Y_N) = \sigma_K(Y_K)$, a.s..

 $\sigma_N(Y_N) \supset \sigma_{N+1}(Y_{N+1}) \supset \sigma_{N+2}(Y_{N+2}) \supset \cdots \rightarrow \exists A, \text{ a.s.}$

A is a random fractal with $d_H = \log \lambda / \log 2$ a.s.

4-2. Speed on the path

Count the numbers of 2^{-N} -triangles Y_N passes through:

$$s_1^N = \#\{2^{-N} \text{-triangles of Type 1}\}$$

 $s_2^N = \#\{2^{-N} \text{-triangles of Type 2}\}$

random variables

Number of steps : $\ell^N = s_1^N + 2s_2^N$ (Time taken to go $O \rightarrow a$.)

$$s_1^N = \#\{\text{Type 1}\} : \text{two vertices}$$

 $s_2^N = \#\{\text{Type 2}\} : \text{three vertices}$

$$s_1^2 = 2, \ s_2^2 = 3$$

 (s_1^N, s_2^N) is a two-type branching process. $\ell^N = s_1^N + 2s_2^N$.

Limit theorem of branching processes

$$\frac{\ell^N}{\lambda^N} \to \exists W > 0, \text{ a.s.}$$

 $\lambda = \frac{1}{15}(20 + \sqrt{205})$ is chosen so that $E[\frac{\ell^N}{\lambda^N}]$ is independent of *N*.

This theorem garantees the convergence of crossing time of any triangle.

Summary

- The existence of the scaling limit of LERW.
- The path of the limiting process has infinitely fine creases, while having no self-intersection.
- Our model and the standard LERW are the same.

• Shinoda, Teufl and Wagner obtained the scaling limit independently, by a different method (using uniform spanning trees).

References

- G. Lawler, *Intersections of Random Walks*, Birkhäuser, (LERW on \mathbb{Z}^d)
- M. Shinoda, E. Teufl, S. Wagner *Uniform spanning trees on Sierpinski graphs*, arXiv:1305.5114
- Hattori, Mizuno, *Loop-erased random walk on the Sierpinski gasket*, SPA 124 (2014) 566–585

Vielen Dank!

Above, $((Q_0X_N)(0), (Q_0X_N)(1), (Q_0X_N)(2)) = (O, b, a).$

Conditional path measures $P_1 : ((Q_0 X_N)(0), (Q_0 X_N)(1)) = (O, a).$ $P'_1 : ((Q_0 X_N)(0), (Q_0 X_N)(1), (Q_0 X_N)(2)) = (O, b, a).$ • The LERW belongs to a different universarity class from SAW studied earlier (H., T. Hattori, Kusuoka).

$$d_{LERW} = \frac{\log(20 + \sqrt{205})/15}{\log 2} = 1.1939\dots$$

$$d_{SAW} = \frac{\log(7 - \sqrt{5})/2}{\log 2} = 1.2521\dots$$

Generating functions

 \hat{W}_N : The set of loopless paths on F_N from O to a, $\hat{P}_N = P_N \circ L^{-1}, \ \hat{P}'_N = P'_N \circ L^{-1}$: LERW path measures

$$\Phi_N(x,y) = \sum_{w \in \hat{W}_N} \hat{P}_N(w) \ x^{s_1(w)} \ y^{s_2(w)},$$

$$\Theta_N(x,y) = \sum_{w \in \hat{W}_N} \hat{P}'_N(w) \ x^{s_1(w)} \ y^{s_2(w)}, \quad x,y \ge 0.$$

Recursions

Proposition.

The recursion relations:

 $\Phi_{N+1}(x, y) = \Phi_1(\Phi_N(x, y), \Theta_N(x, y)).$ $\Theta_{N+1}(x, y) = \Theta_1(\Phi_N(x, y), \Theta_N(x, y)), N \in \mathbb{N}.$

$$\Phi_1(x,y) = \frac{1}{30}(15x^2 + 8xy + y^2 + 2x^2y + 4x^3).$$

$$\Theta_1(x,y) = \frac{1}{45}(5x^2 + 11xy + 2y^2 + 14x^2y + 8x^3 + 5xy^2).$$

Mean matrix of the number of triangles

$$\mathbf{M} = \begin{bmatrix} \frac{\partial}{\partial x} \Phi_1(1,1) & \frac{\partial}{\partial y} \Phi_1(1,1) \\ \frac{\partial}{\partial x} \Theta_1(1,1) & \frac{\partial}{\partial y} \Theta_1(1,1) \end{bmatrix} = \begin{bmatrix} \frac{9}{5} & \frac{2}{5} \\ \frac{26}{15} & \frac{13}{15} \end{bmatrix}$$

The larger eigenvalue

$$\lambda = \frac{1}{15}(20 + \sqrt{205}) = 2.2878\dots$$

The average steps from *O* to *a* on $F_N \sim \lambda^N$ ($N \to \infty$) ($\ell(w) = s_1(w) + 2s_2(w)$) *n* steps \rightarrow time *n*

49

Need an appropriate time-scaling $\longrightarrow X_N(\lambda^N \cdot)$

 X_N : LERW on F_N

Loop-erasing from SRW on F_N

Erasing-larger-scale-loops-first rule. (not chronologically) Q and L_1 are enough for our loop-erasing (random fractal approach).

Step 1: Coarse-grain onto *F*₁

Note that if w has a loop with diameter larger than 1/2, then Q_1w has a loop.

Step 2: Erase loop from Q_1w .

Now all loops with diameter larger than 1/2, are gone. 51

Each 2^{-1} triangles are similar to F_{N-1} . Apply the same procedure to each path segment and erase the largest-scale loops (larger than 1/4) loops. Repeat until we have no loops. (Repetition of Q_1 and L.)

A spanning tree on F_3

A spanning tree on F_3 The unique path $O \rightarrow a$