Loop-erased random walk on a fractal - a random fractal approach

Kumiko Hattori (Tokyo Metropolitan University), joint work with Michiaki Mizuno

0. What l'm going to talk about

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

0. What l'm going to talk about

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

0. What l'm going to talk about

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

0. What l'm going to talk about

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

0. What l'm going to talk about

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Loop-erased random walk on a graph (Lawler 1980)
Erase loops in chronological order.

5

0. What l'm going to talk about

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Loop-erased random walk on a graph (Lawler 1980)
Erase loops in chronological order.

0. What l'm going to talk about

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Loop-erased random walk on a graph (Lawler 1980)
Erase loops in chronological order.

0. What l'm going to talk about

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Loop-erased random walk on a graph (Lawler 1980)
Erase loops in chronological order.

0. What l'm going to talk about

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Loop-erased random walk on a graph (Lawler 1980)
Erase loops in chronological order.

0. What l'm going to talk about

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Loop-erased random walk on a graph (Lawler 1980)
Erase loops in chronological order.

0. What l'm going to talk about

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Loop-erased random walk on a graph (Lawler 1980)
Erase loops in chronological order.

0. What l'm going to talk about

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Loop-erased random walk on a graph (Lawler 1980)
Erase loops in chronological order.

0. What l'm going to talk about

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

Loop-erased random walk on a graph (Lawler 1980)
Erase loops in chronological order.

0. What l'm going to talk about

Loop-erased random walk on a graph (Lawler 1980)

Erase loops in chronological order. Here we will call it the 'standard' LERW.

0. What l'm going to talk about

Scaling limit of a loop-erased random walk

What kind of process will we have as $\delta \rightarrow 0$?

0. What l'm going to talk about

We consider this problem on the pre-Sierpinski gasket

$\delta=2^{-N} \rightarrow 0 ?$

0. What l'm going to talk about

Method : a random fractal approach

17

0. What l'm going to talk about

Result : In the scaling limit we get a continuous process, whose path has no self-intersections but has infinitely fine creases ($d_{H}>1$).

Outline

1. Notations and two basic operations
2. Random fractal approach to LERW
3. Main results (scaling limit)
4. Idea of proof

1-1. The pre-Sierpinski gaskets

The pre-Sierpinski gaskets: A series of finite graphs

F_{N} : pre-SG with lattice spacing 2^{-N}
Scaling limit ($N \rightarrow \infty$)
$F_{N} \longrightarrow F$: Sierpinski gasket (a fractal)
21

1-2. Simple random walks on the pre-SG's

$X_{N}(n)$:SRW on F_{N} from O to a.
w : a sample path of X_{N}.

$$
X_{N}(i, \omega)=w(i), i=0,1, \cdots, \ell(w), w(0)=O, w(\ell(w))=a
$$

Random fractal approach : We erase loops in an iterative manner using only two kinds of operations, coarse-graining and loop-erasing on F_{1}. 22

1-3. Coarse-graining

$X_{N}:$ SRW on F_{N} from O to a.
Q : Coarse-graining onto F_{1} : Pick up F_{1} vertices X_{N} visits. If it visits a vertex more than once in a row, then count only once.
$Q X_{N}$ is a SRW on F_{1} from O to a, that is, X_{1}.

23

1-4. Loop-erasing from SRW on F_{1}

Two conditional SRW on F_{1}.

P_{1} : the path measure of SRW not via b.
P_{1}^{\prime} : the path measure of SRW via b.
For example, $P_{1}\left[w_{1}\right]=\left(\frac{1}{2}\right)^{2}\left(\frac{1}{4}\right)^{4} /\left(\frac{1}{2}\right)$.
Conditioned
L_{1} : Loop-erasing operator on random walks on F_{1} (chronological).

$\hat{P}_{1}=P_{1} \circ L_{1}^{-1}, \hat{P}_{1}^{\prime}=P_{1}^{\prime} \circ L_{1}^{-1}:$ LERW measures
($\hat{P}_{1}\left[w^{\prime}\right]$ is the probability to get a path w^{\prime} as a result of loop-erasure.) Infinitely many paths result in a same path.
These probabilities can be calculated directly.

$$
\left.\hat{P}_{1}=P_{1} \circ L_{1}^{-1}: \text { LERW measure (SRW not via } b\right)
$$

$$
\begin{gathered}
\hat{P}_{1}\left[w_{1}\right]=\frac{1}{2}, \hat{P}_{1}\left[w_{2}\right]=\hat{P}_{1}\left[w_{3}\right]=\frac{2}{15}, \\
\hat{P}_{1}\left[w_{4}\right]=\hat{P}_{1}\left[w_{5}\right]=\hat{P}_{1}\left[w_{6}\right]=\frac{1}{30}, \hat{P}_{1}\left[w_{7}\right]=\frac{2}{15}, \\
\hat{P}_{1}\left[w_{i}\right]=0, i=8,9,10 .
\end{gathered}
$$

$$
\hat{P}_{1}^{\prime}=P_{1}^{\prime} \circ L_{1}^{-1}: \text { LERW measure }(\text { SRW via } b)
$$

$$
\hat{P}_{1}^{\prime}\left[w_{1}\right]=\frac{1}{9}, \hat{P}_{1}^{\prime}\left[w_{2}\right]=\hat{P}_{1}^{\prime}\left[w_{3}\right]=\frac{11}{90},
$$

$\hat{P}_{1}^{\prime}\left[w_{4}\right]=\hat{P}_{1}^{\prime}\left[w_{5}\right]=\hat{P}_{1}^{\prime}\left[w_{6}\right]=\frac{2}{45}, \quad(b$ can be erased $)$

$$
\hat{P}_{1}^{\prime}\left[w_{7}\right]=\frac{8}{45}, \hat{P}_{1}^{\prime}\left[w_{8}\right]=\frac{2}{9}, \hat{P}_{1}^{\prime}\left[w_{9}\right]=\hat{P}_{1}^{\prime}\left[w_{10}\right]=\frac{1}{18} .
$$

2. Loop-erasing from SRW on F_{N}

The random fractal approach : erase loops in descending order of size. (not chronologically)
Q and L_{1} are enough!
Step ${ }_{a}$

SRW on F_{N}
(2 2^{-N} - lattice)

$b \quad o$
O
b
Coarse-grained walk (SRW on F_{1})

Step 2
Erase loops from Qw
Step 3

Restore fine structure

w_{1} has no loops with diam $>2^{-1}$.

$O \quad b$
The original path

Each 2^{-1} triangle is similar to F_{N-1}. Apply Step 1-3 to each path segment and erase largest-scale (larger than $1 / 4)$ loops. Repeat until the path has no loops.

Similar to F_{N-1}

Resulting loop-erased path. (After repetition of Q and L_{1})

L : Loop-erasing operator
$Y_{N}=L X_{N}$: loop-erased random walk on F_{N}

3. Main results

Theorem 1.

$Y_{N}:$ LERW on F_{N}.
As $N \rightarrow \infty, Y_{N}\left(\lambda^{N}\right.$.) converges uniformly in t to a continuous process Y on the SG a.s.

Theorem 2.
Y is almost surely self-avoiding.
The path Hausdorff dimension is
$d_{\text {LERW }}(Y([0, \infty)))=\log \lambda / \log 2=1.1939 \ldots>1$ a.s.

$$
\lambda=\frac{1}{15}(20+\sqrt{205})=2.2878 \ldots .
$$

Theorem 3.

Our LERW has the same distribution as that of the standard LERW (obtained by erasing loops chronologically).

- Note that in general, erasing loops in a different order results in a different stochastic process.

4. Idea of proof

Proposition (branching) Y_{N+1} is obtained from Y_{N} by the following branching.

34

$\hat{P}_{1}=P_{1} \circ L_{1}^{-1}:$ LERW measure (SRW not via b)

4-1. Path as a closed set

For a path w on the pre-SG or SG, define $\sigma_{K}(w)$ (K-skeleton of a path w) by the union of (closed) 2^{-K}-triangles w passes through (entance \neq exit).
$\sigma_{1}(w) \supset \sigma_{2}(w) \supset \sigma_{3}(w) \supset \cdots$

Fix K arbitrarily.
From our construction of branching into finer path, for any $N \geq K, \sigma_{K}\left(Y_{N}\right)=\sigma_{K}\left(Y_{K}\right)$, a.s..

$\sigma_{N}\left(Y_{N}\right) \supset \sigma_{N+1}\left(Y_{N+1}\right) \supset \sigma_{N+2}\left(Y_{N+2}\right) \supset \cdots \rightarrow \exists A$, a.s.
A is a random fractal with $d_{H}=\log \lambda / \log 2$ a.s.

4-2. Speed on the path

Count the numbers of 2^{-N}-triangles Y_{N} passes through:

Type 1

Type 2

$s_{1}^{N}=\sharp\left\{2^{-N^{-}}\right.$-triangles of Type 1$\}$
$s_{2}^{N}=\sharp\left\{2^{-N^{-}}\right.$-triangles of Type 2$\}$
random variables

$$
\begin{aligned}
& s_{1}^{N}=\sharp\{\text { Type } 1\}: \text { two vertices } \\
& s_{2}^{N}=\sharp\{\text { Type } 2\}: \text { three vertices }
\end{aligned}
$$

Number of steps: $\ell^{N}=s_{1}^{N}+2 s_{2}^{N}$
(Time taken to go $O \rightarrow a$.)
$\left(s_{1}^{N}, s_{2}^{N}\right)$ is a two-type branching process. $\ell^{N}=s_{1}^{N}+2 s_{2}^{N}$.

Limit theorem of branching processes

$$
\frac{\ell^{N}}{\lambda^{N}} \rightarrow \exists W>0, \text { a.s. }
$$

$\lambda=\frac{1}{15}(20+\sqrt{205})$ is chosen so that $E\left[\frac{\ell^{N}}{\lambda^{N}}\right]$ is independent of N.

This theorem garantees the convergence of crossing time of any triangle.

Summary

- The existence of the scaling limit of LERW.
- The path of the limiting process has infinitely fine creases, while having no self-intersection.
- Our model and the standard LERW are the same.
- Shinoda, Teufl and Wagner obtained the scaling limit independently, by a different method (using uniform spanning trees).

References

- G. Lawler, Intersections of Random Walks, Birkhäuser, (LERW on \mathbb{Z}^{d})
- M. Shinoda, E. Teufl, S. Wagner Uniform spanning trees on Sierpinski graphs, arXiv:1305.5114
- Hattori, Mizuno, Loop-erased random walk on the Sierpinski gasket, SPA 124 (2014) 566-585

Vielen Dank!
F_{0}

44
Q_{0} : Coarse-graining onto F_{0}

Above, $\left(\left(Q_{0} X_{N}\right)(0),\left(Q_{0} X_{N}\right)(1),\left(Q_{0} X_{N}\right)(2)\right)=(O, b, a)$.

Conditional path measures

$$
\begin{aligned}
& P_{1}:\left(\left(Q_{0} X_{N}\right)(0),\left(Q_{0} X_{N}\right)(1)\right)=(O, a) . \\
& P_{1}^{\prime}:\left(\left(Q_{0} X_{N}\right)(0),\left(Q_{0} X_{N}\right)(1),\left(Q_{0} X_{N}\right)(2)\right)=(O, b, a) .
\end{aligned}
$$

- The LERW belongs to a different universarity class from SAW studied earlier (H., T. Hattori, Kusuoka).

$$
d_{L E R W}=\frac{\log (20+\sqrt{205}) / 15}{\log 2}=1.1939 \ldots
$$

$$
d_{S A W}=\frac{\log (7-\sqrt{5}) / 2}{\log 2}=1.2521 \ldots
$$

Generating functions

\hat{W}_{N} : The set of loopless paths on F_{N} from O to a, $\hat{P}_{N}=P_{N} \circ L^{-1}, \hat{P}_{N}^{\prime}=P_{N}^{\prime} \circ L^{-1}:$ LERW path measures

$$
\begin{gathered}
\Phi_{N}(x, y)=\sum_{w \in \hat{W}_{N}} \hat{P}_{N}(w) x^{s_{1}(w)} y^{s_{2}(w)}, \\
\Theta_{N}(x, y)=\sum_{w \in \hat{W}_{N}} \hat{P}_{N}^{\prime}(w) x^{s_{1}(w)} y^{s_{2}(w)}, \quad x, y \geq 0 .
\end{gathered}
$$

Recursions

Proposition.

The recursion relations:

$$
\begin{gathered}
\Phi_{N+1}(x, y)=\Phi_{1}\left(\Phi_{N}(x, y), \Theta_{N}(x, y)\right) \\
\Theta_{N+1}(x, y)=\Theta_{1}\left(\Phi_{N}(x, y), \Theta_{N}(x, y)\right), \quad N \in \mathbb{N} . \\
\Phi_{1}(x, y)=\frac{1}{30}\left(15 x^{2}+8 x y+y^{2}+2 x^{2} y+4 x^{3}\right) . \\
\Theta_{1}(x, y)=\frac{1}{45}\left(5 x^{2}+11 x y+2 y^{2}+14 x^{2} y+8 x^{3}+5 x y^{2}\right) .
\end{gathered}
$$

Mean matrix of the number of triangles

$$
\mathbf{M}=\left[\begin{array}{cc}
\frac{\partial}{\partial x} \Phi_{1}(1,1) & \frac{\partial}{\partial y} \Phi_{1}(1,1) \\
\frac{\partial}{\partial x} \Theta_{1}(1,1) & \frac{\partial}{\partial y} \Theta_{1}(1,1)
\end{array}\right]=\left[\begin{array}{cc}
\frac{9}{5} & \frac{2}{5} \\
\frac{26}{15} & \frac{13}{15}
\end{array}\right]
$$

The larger eigenvalue

$$
\lambda=\frac{1}{15}(20+\sqrt{205})=2.2878 \ldots
$$

The average steps from O to a on $F_{N} \sim \lambda^{N} \quad(N \rightarrow \infty)$ $\left(\ell(w)=s_{1}(w)+2 s_{2}(w)\right) \quad n$ steps \rightarrow time n

Need an appropriate time-scaling $\longrightarrow X_{N}\left(\lambda^{N}.\right)$
$X_{N}:$ LERW on F_{N}

Loop-erasing from SRW on F_{N}

Erasing-larger-scale-loops-first rule. (not chronologically) Q and L_{1} are enough for our loop-erasing (random fractal approach).
Step 1: Coarse-grain onto F_{1}

Note that if w has a loop with diameter larger than $1 / 2$, then $Q_{1} w$ has a loop.

Step 2: Erase loop from $Q_{1} w$.

Step 3: Give back finer structure to $L Q_{1} w$.

Now all loops with diameter larger than $1 / 2$, are gone. 51

Each 2^{-1} triangles are similar to F_{N-1}. Apply the same procedure to each path segment and erase the largest-scale loops (larger than 1/4) loops. Repeat until we have no loops. (Repetition of Q_{1} and L.)

A spanning tree on F_{3}

53

A spanning tree on F_{3}
The unique path $O \rightarrow a$

54

