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Abstract

We study self-avoiding paths on the three-dimensional pre-Sierpinski
gasket. We prove the existence of the limit distribution of the scaled
path length, the exponent for the mean square displacement, and the
continuum limit. We also prove that the continuum-limit process is a
self-avoiding process on the three-dimensional Sierpinski gasket, and that
a path almost surely has infinitely fine creases.

1 Introduction

The three-dimensional pre-Sierpinski gasket is a pre-fractal which we intro-
duce as a three-dimensional analog of the pre-Sierpinski gasket. Let O =
(0, 0, 0), a0 = (1

2 ,
√

3
6 ,

√
6

3 ), b0 = (1
2 ,

√
3

2 , 0), c0 = (1, 0, 0), and let F0 be the set of
vertices and edges of the tetrahedron Oa0b0c0. We define a sequence of graphs
F0, F1, F2, . . . , inductively by

Fn+1 = Fn ∪ (Fn + 2na0) ∪ (Fn + 2nb0) ∪ (Fn + 2nc0), n = 0, 1, 2, . . . ,

where, A + a = {x + a | x ∈ A}, and kA = {kx | x ∈ A}. We call F =
∞⋃

n=0

Fn

the three-dimensional pre-Sierpinski gasket. We denote the set of vertices in F
by G, and put an = 2na0, bn = 2nb0, cn = 2nc0.
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Let Z+ = {0, 1, 2, . . .} and define the set of self-avoiding paths W0 on G to
be the set of mappings w : Z+ → G such that there exists L(w) ∈ Z+ ∪ {∞}
for which

w(i) = w(L(w)), i ≥ L(w),
w(i1) �= w(i2), 0 ≤ i1 < i2 ≤ L(w),

|w(i) − w(i + 1)| = 1, 0 ≤ i ≤ L(w) − 1, and

w(i)w(i + 1) ⊂ F, 0 ≤ i ≤ L(w) − 1.

We call L(w) the length of the path w.
In previous papers [2, 3, 4], we studied the self-avoiding paths on the (two-

dimensional) Sierpinski gasket. Here, we study the self-avoiding paths on the
three-dimensional Sierpinski gasket. In the case of the two-dimensional Sierpin-
ski gasket, a self-avoiding path is allowed to pass through a unit triangle at most
once, while in the case of the three-dimensional Sierpinski gasket, it is allowed
to pass through a unit tetrahedron more than once. One might suspect that this
fact affects properties that enabled the detailed analyses in the two-dimensional
case. We will show in this paper that despite such complexties, we can carry on
our analyses in the three-dimensional case.

Define W ∗(n) ⊂ W0 by

W ∗(n) = {w ∈ W0 | w(0) = O , w(L(w)) = an , w(Z+) ⊂ Fn} ,

and let
Z∗

n(β) =
∑

w∈W∗(n)

exp(−β L(w)) , β ∈ R , n ∈ Z+ .

In Section 3 we prove the following.

Theorem 1.1. There exists a constant βc such that

lim
n→∞

Z∗
n(β) = 0 , β > βc ,

lim
n→∞

Z∗
n(β) = xc , β = βc .

lim
n→∞

Z∗
n(β) = ∞ , β < βc ,

This theorem suggests that in terms of statistical mechanics, β > βc is the
low temperature regime, β < βc is the high temperature regime, and βc is the
critical point.

The asymptotic behavior of the partition function Z∗
n is related to the asymp-

totic distribution of the path length L. In fact, in Section 4 we prove the fol-
lowing. Let µ∗

n be a probability measure on W ∗(n) defined by

µ∗
n[w] = Z∗

n(βc)−1 exp(−βcL(w)) , w ∈ W ∗(n) .
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Theorem 1.2. There exists a constant λ satisfying 2 < λ < 3 such that the
distribution of ‘scaled path length’ λ−nL under µ∗

n converges to a probability
measure p∗ on R as n → ∞ . The measure p∗ has a C∞ density ρ, which
satisfies ρ(x) = 0 , x ≤ 0 , and ρ(x) > 0 , x > 0 .

Numerically, λ = 2.7965 . . . , to be compared with the corresponding con-

stant λSG2 for the (two-dimensional) Sierpinski gasket, λSG2 =
7 −

√
5

2
= 2.381966 . . . .

In Section 5, we study the continuum limit construction of self-avoiding
process.

Let F̃n = 2−nFn , n = 0, 1, 2, . . . , and define the finite three-dimensional

Sierpinski gasket F̃ by F̃ =
∞⋃

n=0

F̃n . F̃ is a graph obtained by giving a substruc-

ture to a unit tetrahedron Oa0b0c0. Let

C = {w ∈ C([0,∞) → F̃ ) | w(0) = O, lim
t→∞

w(t) = a0} .

C is a complete separable metric space with the metric

d(u, v) = sup
t∈[0,∞)

|u(t) − v(t)| , u, v ∈ C .

Define γ :
⋃
n

W ∗(n) → C as follows: For u ∈ W ∗(n) , γu(j) = 2−nu(j) for

j ∈ Z+ , and for t �∈ Z+ , u(t) is defined by linear interpolation. Also define time-
scale transformation Un(λ) : C → C , n ∈ N , by (Un(λ)w)(t) = w(λnt) , w ∈
C .

Denote by Pn the image measure of µ∗
n induced by Un(λ) ◦ γ.

Theorem 1.3. Pn converges to a probability measure P on C weakly as n →
∞. The stochastic process defined by P is almost surely self-avoiding, and the
Hausdorff dimension of the trajectory, {w(t) | 0 ≤ t < ∞} , is almost surely
greater than one.

See Theorem 5.5, Theorem 5.15, and Theorem 5.16 in Section 5 for the proof.
Since Pn is supported on piecewise linear curves, the Hausdorff dimension of

a curve is almost surely 1 with respect to Pn . The statement on the Hausdorff
dimension in Theorem 1.3 implies that the continuum limit n → ∞ , is a non-
trivial limit, and that with P -probability one, we have self-avoiding paths with
infinitely fine creases.

The two ingredients for the proof of the results are the convergence of the
distribution of crossing times of tetrahedrons, obtained from the results in Sec-
tion 4, and the considerations about the distribution of the shape of the paths.
See Proposition 5.2 for more properties on the crossing time distributions, and
Theorem 5.11 and Proposition 5.14 for more on the distribution of the shape of
the paths.
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In Section 6 we consider a set of paths on the pre-Sierpinski gasket with
a fixed length, instead of paths with fixed end points. Let W (0) = {w ∈
W0 | w(0) = O} , and for each k ∈ Z+ , let N(k) be the number of elements
in {w ∈ W (0) | L(w) = k} . Let P̃k , k ∈ Z+ , be probability mesures on W (0)

defined by,

P̃k(A) = N(k)−1�{w ∈ A | L(w) = k} , A ⊂ W (0) .

For w ∈ W (0), let ||w|| = max{|w(k)| ; k = 1, 2, . . . , L(w)} , where | · | is the
(Euclidean) length in R3 . Put κ = log λ/ log 2 , where λ is as in Theorem 1.2.

Theorem 1.4. (1) lim
k→∞

k−1 log N(k) = βc .

(2) There exists a positive constant α such that

lim
k→∞

P̃k[ ||w|| < (log k)−αk1/κ or ||w|| > (log k)αk1/κ ] exp((log k)2) = 0 .

(3)

lim
k→∞

(log k)−1 log EP̃k [|w(k)|sκ] = s , s ∈ R .

This theorem says that the exponent for the mean square displacement of

self-avoiding random walk on the three-dimensional Sierpinski gasket is
log 2
log λ

.

The starting point for the analyses in this paper is the study of renormal-
ization group, which is a dynamical system in a certain parameter space which
specifies the path ensemble. Such dynamical system is derived as the response
in the parameter space to the change in n. In Section 2, we study the behaviors
of this dynamical system. A certain graphical property of the three-dimensional
Sierpinski gasket implies that the renormalization group is a finite dimensional
dynamical system. (We prefer to call this property the finite ramification of the
fractal.)

We would like to mention some previous works in the physics literature. The
two-dimensional mapping defined by eq. (2.3) and eq. (2.4) in Proposition 2.1
is given in [1, 7]. In [1], a set of self-avoiding paths on a slightly different fractal
is considered, where this mapping is an exact renormalization group recursion
relation. In [7], self-avoiding paths on the three-dimensional Sierpinski gasket
is studied, where the authors state (without explicit discussion or proof,) that
the same mapping becomes ‘relevant’ (i.e. determines the asymptotic behavior)
of the present problem. Numerical estimates of the fixed point ((xc, yc) in
Proposition 3.1) and the derivative (p, q, and r in Proposition 3.7) of this
mapping together with the exponent for mean square displacement are also
given in these references. However, their results are based on the assumption
(based on numerical studies) of the existence of these quantities and the good
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limiting behaviors. We believe that this is the first time to give mathematically
rigorous proofs. A well-defined statement on the exponent (Theorem 1.4) seems
also to have been lacking. We also believe that the limit theorems for path
length distribution (Theorem 1.2) and the continuum limit (Theorem 1.3) are
new.

We would also like to take this opportunity to note that the reference [1]
should also have been included in the reference of [3].

We would like to thank Professor N. Asano and Professor H. Nakajima for
bringing our attention to the references on dynamical systems.

2 Recursion relations for the generating func-
tions

Let T denote the set of subgraphs in F which are the translations of F0. T is
a set of the unit tetrahedrons that compose F . For each w ∈ W0 , let ŵ ⊂ F
be the curve defined by joining each pair of points w(i) and w(i + 1) with an
edge of F , for all i = 0, 1, 2, · · · , L(w) − 1 . For each tetrahedron � ∈ T , the
intersection ŵ ∩ � is either empty or one of the following four possibilities:
case 1) one edge, case 2) two disjoint edges, case 3) two edges connected at a
vertex, and case 4) three edges that constitute a chain. Correspondingly, define
Si(w), i = 1, 2, 3, 4, w ∈ W0, as: Si(w) = {� ∈ T | ŵ ∩ � is of case i).}. For
each i = 1, 2, 3, 4, let si(w) be the number of the elements of Si(w). Note that
s1 + 2s2 + 2s3 + 3s4 = L.

For n ∈ Z+ and p ∈ G , q ∈ G, define W (n,p,q) ⊂ W0 by

W (n,p,q) = {w ∈ W0 | w(0) = p, w(L(w)) = q, w(Z+) ⊂ Fn},

and let W
(n)
i , i = 1, 2, 3, 4, n ∈ Z+, be as follows:

W
(n)
1 = {w ∈ W (n,O,an) | w(Z+) ∩ {bn, cn} = ∅},

W
(n)
2 = {(w1, w2) ∈ W (n,O,an) × W (n,bn,cn) | w1(Z+) ∩ w2(Z+) = ∅},

W
(n)
3 = {w ∈ W (n,O,an) | w(Z+) ∩ {bn, cn} = {bn}},

W
(n)
4 = {w ∈ W (n,O,an) | there exist two positive integers i and j

such that i < j , w(i) = bn , and w(j) = cn},

For a subset W of W0, let X(W ) be the generating function for W defined
by

X(W )(�x) =
∑

w∈W

4∏
i=1

x
si(w)
i , �x = (x1, x2, x3, x4) ∈ C4.(2.1)

To extend the definition of si to W
(n)
2 , note that if w = (w′, w′′) ∈ W

(n)
2 and

� ∈ T , (ŵ′ ∪ ŵ′′) ∩� is either empty or one of the four possibilities mentioned
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above. Therefore, the definition of Si(w) given above has a natural extension to
w ∈ W

(n)
2 . si(w), w ∈ W

(n)
2 , is again defined to be the number of the elements

of Si(w).
Let Xi,n(�x) = X(W (n)

i )(�x), i = 1, 2, 3, 4.

Proposition 2.1. The following recursion relation holds:

�Xn+1(�x) = �Φ( �Xn(�x)), n ∈ Z+ ,(2.2)

where �Xn(�x) = (X1,n(�x),X2,n(�x),X3,n(�x), X4,n(�x)), and �X0(�x) = �x. �Φ =
(Φ1, Φ2, Φ3, Φ4) satisfies the following:

(1) Each function Φi, i = 1, 2, 3, 4, is a polynomial of degree 4 in 4 variables
with positive coefficients. Each term in Φi, i = 1, 2, 3, 4, is at least of
degree 2, 4, 3, 4, respectively.

(2) Let Ξ0 = {�x ∈ R4 | xi ≥ 0, i = 1, 2, 3, 4, x2
1 ≥ x2} and Ξ = {�x ∈ R4 | xi >

0, i = 1, 2, 3, 4, x2
1 ≥ x2}. Then �Φ(Ξ0) ⊂ Ξ0 and �Φ(Ξ) ⊂ Ξ.

(3)

Φ1(x, y, 0, 0) = x2 + 2x3 + 2x4 + 4x3y + 6x2y2 ,(2.3)
Φ2(x, y, 0, 0) = x4 + 4x3y + 22y4 .(2.4)

(4) There exist polynomials Φ4,1, Φ4,2, and Φ3,0, with positive coeffients, sat-
isfying the following:

Φ4(�x) = Φ4,1(�x)x3 + Φ4,2(�x)x4,(2.5)
Φ3(�x) = 2(Φ4,1(�x)x1 + 1

2Φ4,2(�x)x3) + Φ3,0(�x).(2.6)

Moreover, Φ3,0(�x) has terms x2
1x3 + 2x3

1x3.

(5) There exist polynomials Φ3,1, Φ3,2, and Φ1,0, with positive coeffients, sat-
isfying the following:

Φ3(�x) = Φ3,1(�x)x3 + Φ3,2(�x)x4,(2.7)
Φ1(�x) = Φ3,1(�x)x1 + 1

2Φ3,2(�x)x3 + Φ1,0(�x).(2.8)

Moreover, Φ1,0(�x) has terms x2
1, x2

3, and x2
4.

(6) Φ1(�x) has terms x1x3 and x1x4 , Φ2(�x) has terms x3
1x3 and x3

1x4 , and
Φ4(�x) has a term x2

1x
2
3 . Furthermore, all the terms in Φ4(�x) are at least

of degree 2 in x3 and x4 .
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Proof. The methods of obtaining the recursion relations eq. (2.2) are quite
similar to the case of the (two-dimensional) Sierpinski gasket[3], so that the
explanations will be brief. Note that Fn+1 is composed of 4 tetrahedrons fk, k =
1, 2, 3, 4, say, each congruent to Fn. These 4 tetrahedrons assemble to form Fn+1,
in the same way as 4 unit tetrahedrons, congruent to F0, assemble to form F1.
This similarity of the composition leads to a natural mapping π : W

(n+1)
i →

W
(1)
i . For each k = 1, 2, 3, 4, and for each w ∈ W

(n+1)
i , consider the intersection

wk def= fk ∩ w(Z+). Under the identification of fk and Fn, wk ∈
4⋃

j=1

W
(n)
j . If

one classifies the summation of w in eq. (2.1) for Xi,n+1(�x) by π(w), one finds
that eq. (2.2) holds with �Φ = �X1. Sincce there are 4 unit tetrahedrons in F1,
Φi(�x) = Xi,1(�x), i = 1, 2, 3, 4, are polynomials of degree 4. Since w ∈ W

(1)
1

passes O and a1, each term in Φ1(�x) = X1,1(�x) is at least of degree 2. Similar
arguments hold for Φi(�x), i = 2, 3, 4, by which the assertion (1) is proved.

Let �x ∈ Ξ (�x ∈ Ξ0, respectively). From the assertion (1) it is clear that
Φi(�x) > 0 (Φi(�x) ≥ 0, respectively). Let �x′ = �Φ(�x).

x′2
1 = X1,1(�x)2

=
∑

w′∈W
(1)
1

∑
w′′∈W

(1)
1

4∏
i=1

x
si(w

′)+si(w
′′)

i

≥
∑

w∈W
(1)
2

4∏
i=1

x
si(w

′)+si(w
′′)

i

≥ X2,1(�x) = x′
2,

where the last inequality comes from x2
1 ≥ x2. Therefore the assertion (2) holds.

The two formulas eq. (2.3) and eq. (2.4) are obtained through the explicit
calculations of �Φ(x, y, 0, 0) = �X1(x, y, 0, 0). An example of the paths w ∈ W

(1)
1

which contribute to the x2y2 term in Φ1(x, y, 0, 0) = X1,1(x, y, 0, 0) is given in
Figure 1(a) (the slim lines in the figure represent F1 = Oa1b1c1 projected onto
the Oa1b1 plane, and ŵ is represented by the bold lines), and a path w ∈ W

(1)
2

for the y4 term in Φ2(x, y, 0, 0) = X2,1(x, y, 0, 0) is given in Figure 1(b).
Denote by �c, the tetrahedron F0 + c0, which is the unit tetrahedron in F1

that has c1 as one of its vertices. To obtain eq. (2.5), classify the summation
over w in eq. (2.1) for Φ4(�x) = X(W (1)

4 )(�x) by the shape of the intersection
w(Z+)∩�c. Only case 3) or case 4) is possible for the intersection, which gives
the contribution of factor x3 or x4 to each term in Φ4(�x), respectively, which in
turn gives contribution of the first and the second term in the right hand side
of eq. (2.5), respectively.

Consider now the relation between Φ4 and Φ3. Denote the four vertices of �c

by p, q, r, c1. Note that the paths contributing to Φ4(�x) = X4,1(�x) must pass the
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vertex c1. One can obtain a path contributing to Φ3 from such a path, by short
cutting c1 such as (. . . , p, q, . . .) instead of (. . . , p, c1, q, . . .). Denote the mapping
induced by such operation by ρ : W

(1)
4 → W

(1)
3 . For the paths contibuting to

Φ4,2(�x)x4 in Φ4(�x), ρ is a two-to-one mapping, since ρ((. . . , p, c1, r, q, . . .)) =
(. . . , p, r, q, . . .) and ρ((. . . , p, r, c1, q, . . .)) = (. . . , p, r, q, . . .). Therefore such
paths, mapped by ρ, give contribution of 1

2Φ4,2(�x)x3 to Φ3(�x). Similarly, the
paths contributing to Φ4,1(�x)x3 are mapped one-to-one onto the paths con-
tributing to the term Φ4,1(�x)x1 in Φ3(�x). Let

W ′(n)
4 = {w ∈ W (n,O,an) | there exist two positive integers i and j

such that i < j , w(i) = cn , and w(j) = bn}.

Then it is easy to see that W
(1)
3 ⊃ ρ(W ′(1)

4 ) and ρ(W (1)
4 ) ∩ ρ(W ′(1)

4 ) = ∅. The
paths in ρ(W ′(1)

4 ) give the same contribution to Φ3(�x) as the paths in ρ(W (1)
4 ).

Hence the factor 2 in the right hand side of eq. (2.6). There are paths w ∈ W
(1)
3

which are not in the image of ρ, namely, those paths that do not pass through
�c. Such contribution are denoted by Φ3,0(�x). In particular, there is a path
in W

(1)
3 which starts at O, moves in a straight line to b1, and then moves in

a straight line to a1, which gives a contribution x2
1x2 to Φ3,0(�x). This proves

eq. (2.6). The formulas eq. (2.7) and eq. (2.8) are derived by similar arguments.
The assertion (6) is straightforward. This completes the proof. �

Remark. By aid of computers, it is not difficult to obtain the full forms of the
recursion relations �Φ. The full explicit forms of �Φ are given in Appendix A.
They are, howerver, unnecessary for the analyses of the limit n → ∞ in this
paper.

Let Ξ0 be as defined in Proposition 2.1 (2). For A ∈ Ξ0, let A be the closure
of A in Ξ0, Ac = Ξ0 \ A, ∂A = A ∩ Ac, and Ao = A \ ∂A. Let

D = {�x ∈ Ξ0 | sup
n∈Z+

(X1,n(�x) + X2,n(�x)) < ∞},

D′ = {�x ∈ Ξ0 | max
i∈{1,2,3,4}

sup
n∈Z+

Xi,n(�x) ≤ 1},

D̃ = {�x ∈ Ξ0 | lim
n→∞

max
i∈{1,2,3,4}

Xi,n(�x) = 0}.

Proposition 2.2. (1) D = D′. In particular, D is a closed set in Ξ0.

(2) Let �x ∈ D and �x′ ∈ Ξ0. If x′
i < xi for all i with xi > 0, and x′

i = 0 for all
i with xi = 0, then �x′ ∈ D̃.

(3) D̃ = Do.
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(4)
�Φ(Do) ⊂ Do, �Φ(∂D) ⊂ ∂D, and �Φ(Dc) ⊂ Dc.(2.9)

Proof. Note that by Proposition 2.1 (5) and eq. (2.2), X1,n+1(�x) ≥ X1,n(�x)2,
X1,n+1(�x) ≥ X3,n(�x)2, and X1,n+1(�x) ≥ X4,n(�x)2 hold. Also by eq. (2.4),
X2,n+1(�x) ≥ X2,n(�x)4 follows. Therefore, if �x ∈ D′c, then lim

n→∞
X1,n(�x) =

∞ or lim
n→∞

X2,n(�x) = ∞ hold, which proves that D′c ⊂ Dc. By definition,

D′ ⊂ D, hence D′ = D. Since by definition D′ is a closed set in Ξ0, D is a
closed set in Ξ0.

Let �x ∈ D, �x′ ∈ Ξ0, and x′
i < xi for all i with xi > 0, and x′

i = 0 for all i

with xi = 0. If �x′ = �0, then �x′ ∈ D̃. Assume �x′ �= �0. Put r = max
i;xi �=0

x′
i

xi
. By

assumption, 0 < r < 1, and 0 ≤ x′
i ≤ rxi, i = 1, 2, 3, 4. By Proposition 2.1 (1),

Φi(�x′) ≤ r2Φi(�x), i = 1, 2, 3, 4, hence by induction Xi,n(�x′) ≤ r2n

Xi,n(�x), and

0 ≤ lim sup
n→∞

max
i∈{1,2,3,4}

Xi,n(�x′) ≤
(

lim
n→∞

r2n
)

sup
n∈Z+

max
i∈{1,2,3,4}

Xi,n(�x) = 0, which

proves the assertion (2).
For ε > 0, define Dε by Dε = {�x ∈ Ξ0 | max

i∈{1,2,3,4}
xi < ε}. By Proposi-

tion 2.1 (1) there exists a positive constant M such that if 0 < ε < 1 and �x ∈ Dε,
then Φi(�x) ≤ Mε (x1 + x2 + x3 + x4)/4 , i ∈ {1, 2, 3, 4} . Put ε = min{ 1

2M , 1
2}.

Then for all �x ∈ Dε and for all i, Φi(�x) ≤ ε/2 holds, which further implies
�Φ(�x) ∈ Dε and Φ1(�x) + Φ2(�x) + Φ3(�x) + Φ4(�x) ≤ (x1 + x2 + x3 + x4)/2. By
induction, X1,n(�x) + X2,n(�x) + X3,n(�x) + X4,n(�x) ≤ 2−n(x1 + x2 + x3 + x4).
Hence, there exists a positive constant ε such that

Dε ⊂ D̃.(2.10)

Fix such an ε and let �x ∈ D̃. By definition, there exists a positive integer n
such that �Xn(�x) ∈ Dε holds. Since �Xn(�x) is continuous with respect to �x, there
exists an open set U in Ξ0 such that for all �x′ ∈ U , �Xn(�x′) ∈ Dε holds. Then
by eq. (2.10), lim

n→∞
max

i∈{1,2,3,4}
Xi,n(�x′) = 0. Therefore, U ⊂ D̃. This proves that

D̃ is an open set in Ξ0. By definition, D̃ ⊂ D and also Do is the largest open
set that is included in D. Therefore, D̃ ⊂ Do.

Now let �x′ ∈ Do. Since Do is an open set in Ξ0, there exists a �x ∈ Do such
that x′

i < xi, i = 1, 2, 3, 4. From the assertion (2), �x′ ∈ D̃. Hence, Do ⊂ D̃, and
the assertion (3) is proved.

By definition, �Φ(D) ⊂ D, �Φ(Dc) ⊂ Dc, and �Φ(D̃) ⊂ D̃. From the asser-
tion (3), the assertion (4) follows. This completes the proof. �

Monotonicity properties similar to but slightly different from the Proposi-
tion 2.2 (2) hold, which shall be listed here.
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Proposition 2.3. (1) If �x ∈ D, �x′ ∈ Ξ0, and x′
i ≤ xi, i = 1, 2, 3, 4, then

�x′ ∈ D.

(2) If �x ∈ ∂D, �x′ ∈ Ξ0, and x′
i > xi, i = 1, 2, 3, 4, then �x′ ∈ Dc.

(3) Let Ξ be as defined in Proposition 2.1 (2). If �x ∈ ∂D∩Ξ, �x′ ∈ Ξ0, �x′ �= �x,
and x′

i ≤ xi, i = 1, 2, 3, 4, then �x′ ∈ Do.

(4) If �x ∈ ∂D ∩ Ξ, �x′ ∈ Ξ0, �x′ �= �x, and x′
i ≥ xi, i = 1, 2, 3, 4, then �x′ ∈ Dc.

Proof. Assume �x ∈ D, �x′ ∈ Ξ0, and x′
i ≤ xi, i = 1, 2, 3, 4. Since Φi, i = 1, 2, 3, 4

are polynomials with positive coefficients, Xi,n(�x′) ≤ Xi,n(�x), n ∈ Z+, i =
1, 2, 3, 4. Therefore, �x′ ∈ D follows.

Next assume �x ∈ ∂D, �x′ ∈ Ξ0, and x′
i > xi, i = 1, 2, 3, 4. If �x′ ∈ D

then by Proposition 2.2 (2) and Proposition 2.2 (3) �x ∈ D̃ = Do, which is a
contradiction.

Next assume �x ∈ ∂D ∩ Ξ, �x′ ∈ Ξ0, �x′ �= �x, and x′
i ≤ xi, i = 1, 2, 3, 4.

Since �x′ �= �x, x′
i < xi holds for at least one i. If x′

4 < x4, then by eq. (2.7),
Φ3(�x′) < Φ3(�x). If x′

3 < x3, then by eq. (2.8), Φ1(�x′) < Φ1(�x). If x′
2 < x2

or x′
1 < x1, then by eq. (2.3), Φ1(�x′) < Φ1(�x). Therefore, for every case,

X1,n(�x′) < X1,n(�x), n ≥ 2, which, with eq. (2.3), eq. (2.4), eq. (2.6), eq. (2.5),
implies that Xi,n(�x′) < Xi,n(�x), i = 1, 2, 3, 4, n ≥ 4. �x ∈ ∂D and eq. (2.9) imply
that �Xn(�x) ∈ ∂D ⊂ D, n ≥ 4. From Proposition 2.2 (2) and Proposition 2.2 (3),
�Xn(�x′) ∈ Do, hence �x′ ∈ Do.

Finally assume �x ∈ ∂D ∩ Ξ, �x′ ∈ Ξ0, �x′ �= �x, and x′
i ≥ xi, i = 1, 2, 3, 4. By

the same argument as above, it follows that Xi,n(�x′) > Xi,n(�x), i = 1, 2, 3, 4, n ≥
4. By the assertion (2), �x′ ∈ Dc follows. This completes the proof. �

Define a function R : Ξ → R by

R(�x) = max{x3

x1
,

2x4

x3
},

and let
Rn(�x) = R( �Xn(�x)), �x ∈ Ξ , n ∈ Z+ .

Here, Ξ is defined in Proposition 2.1 (2). Proposition 2.1 (2) implies that Rn is
well-defined.

Proposition 2.4. (1) For each �x ∈ Ξ, Rn(�x) is non-increasing in n. In
particular,

R∞(�x) def= lim
n→∞

Rn(�x)

exists and is non-negative.

(2) If �x ∈ D ∩ Ξ, then R∞(�x) = 0.
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(3) There exists a constant γ satisfying 0 < γ < 1 such that for every �x ∈
D ∩ Ξ,

lim sup
n→∞

Rn+1(�x)
Rn(�x)

≤ γ.(2.11)

(4) If �x ∈ Do ∩ Ξ, then lim sup
n→∞

2−n log Xj,n(�x) < 0 , j = 1, 2.

Proof. From Proposition 2.1 (4) and Proposition 2.1 (5) it follows that Φ3(�x) ≤
R(�x) (Φ1(�x) − Φ1,0(�x)), �x ∈ Ξ, and 2Φ4(�x) ≤ R(�x) (Φ3(�x) − Φ3,0(�x)), �x ∈ Ξ,
from which follows

Rn+1(�x) = max

{
Φ3( �Xn(�x))

Φ1( �Xn(�x))
,

2Φ4( �Xn(�x))

Φ3( �Xn(�x))

}
(2.12)

≤ Rn(�x)

{
1 − min

{
Φ1,0( �Xn(�x))

Φ1( �Xn(�x))
,

Φ3,0( �Xn(�x))

Φ3( �Xn(�x))

}}
.

In particular, Rn(�x) is non-increasing in n.
Assume that �x ∈ Ξ. From Proposition 2.1 (5) and Proposition 2.1 (4),

Φ1,0( �Xn(�x)) ≥ X1,n(�x)2 and Φ3,0( �Xn(�x)) ≥ X1,n(�x)2X3,n(�x). Therefore eq. (2.12)
implies

Rn+1(�x) ≤ Rn(�x)

{
1 − min

{
X1,n(�x)2

Φ1( �Xn(�x))
,

X1,n(�x)2X3,n(�x)

Φ3( �Xn(�x))

}}
.(2.13)

On the other hand, if �x ∈ Ξ, Φ1(�x) ≤ Φ1(x1, x
2
1, x3, x4), so that with Proposi-

tion 2.1 (1) it follows that there exists a polynomial P1 of 5 variables and with
constant positive coefficients, such that x−2

1 Φ1(�x) ≤ P1(x1, x3, x4,
x3
x1

, x4
x1

), and
similarly, there exists a polynomial P2 of 5 variables and with constant posi-
tive coefficients, such that (x2

1x3)
−1Φ3(�x) ≤ P2(x1, x3, x4,

x3
x1

, x4
x3

). Note that if
�x ∈ D ∩ Ξ, then by Proposition 2.1 (2) and Proposition 2.2 (4) it follows that
�Xn(�x) ∈ D ∩ Ξ, n ∈ Z+. Also, by Proposition 2.2 (1) it follows that if �x ∈ D,
then xi ≤ 1, i = 1, 2, 3, 4. Therefore, from eq. (2.13) it follows that there exists
a polynomial P of 1 variable and with constant positive coefficients, such that

Rn+1(�x) ≤ Rn(�x) (1 − P (Rn(�x))−1), �x ∈ D ∩ Ξ.(2.14)

From the assertion (1), P (Rn(�x)) ≤ P (R0(�x)) = P (R(�x)), so that 1−P (Rn(�x))−1

is bounded from above by a constant 1 − P (R(�x))−1 less than 1. The asser-
tion (2) is thus proved.

From the assertion (2) it follows that there exists a positive constant M > 1
independent of �x such that

lim sup
n→∞

P (Rn(�x)) < M , �x ∈ D ∩ Ξ .
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The assertion (3) therefore follows from eq. (2.14).
Next let �x ∈ Do∩Ξ . From Proposition 2.1 (1) and Proposition 2.1 (3), there

exists a polynomoial P3 of three variables with positive coefficients and without
constant terms (i.e. P3(0, 0, 0) = 0), satisfying

Φ1(�x) ≤ x2
1 (1 + P3(x1, x2, R(�x))) .

This with eq. (2.2) implies

log X1,n+1(�x) ≤ 2 log X1,n(�x) + log(1 + P3(X1,n(�x),X2,n(�x), Rn(�x))) .(2.15)

This and Proposition 2.2 (3) and assertion (2) imply

lim sup
n→∞

(log X1,n+1(�x) − 3
2

log X1,n(�x)) = −∞ ,

which, with Proposition 2.2 (3) implies

lim sup
n→∞

((
2
3
)n log X1,n(�x)) < 0 .

This and eq. (2.15) with Proposition 2.2 (3) and assertion (2) imply

lim sup
n→∞

(log X1,n+1(�x) − (2 − (
2
3
)n) log X1,n(�x)) < 0 .

Therefore for sufficiently large N ,

n∏
k=1

(1 − 1
2
(
2
3
)k+N−1)−1 2−n log X1,n+N (�x) ≤ log X1,N (�x) .

This with Proposition 2.2 (3) implies assertion (4) for j = 1. The case j = 2
follows because X2,n(�x) ≤ X1,n(�x)2 . This completes the proof. �

3 Fixed points of the renormalization group flows

Let ι : R2 → R4 be a natural embedding of the x1–x2 plane: ι(x1, x2) =
(x1, x2, 0, 0). From eq. (2.5) and eq. (2.7), x1–x2 plane is an invariant subman-
ifold of the mapping �Φ; �Φ(ι(R2)) ⊂ ι(R2). Therefore, the restriction of �Φ onto
the x1–x2 plane,

�φ
def= ι−1 ◦ �Φ ◦ ι : R2 → R2 ,

is well-defined. Let �φ = (φ1, φ2). From eq. (2.3) and eq. (2.4),

φ1(x, y) = x2 + 2x3 + 2x4 + 4x3y + 6x2y2 ,(3.1)
φ2(x, y) = x4 + 4x3y + 22y4 .(3.2)
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Proposition 3.1. The fixed points of the mapping �φ in the first quadrant
R2

+
def= {(x, y) ∈ R2 | x ≥ 0, y ≥ 0} are (0, 0), (0, 22−

1
3 ), (1

3 , 1
3 ), and (xc, yc),

where xc and yc are positive constants. They satisfy 3
7 < xc < 1

2 and 0 < yc <
9
49 , in particular, xc

2 > yc.

Proof. Assume that (x, y) is a fixed point: φ1(x, y) = x and φ2(x, y) = y. If
x = 0 then y = 0 or y = 22−

1
3 , and if y = 0 then x = 0. Assume in the following

that x > 0 and y > 0. Then,

1 = 6xy2 + 4x2y + 2x3 + 2x2 + x ,(3.3)

x4 + 4x3y + 22y4 − y = 0 .(3.4)

From eq. (3.3) follows 1 > 2x3 + 2x2 + x. The right hand side of this inequality
is increasing in x, and 2

(
1
2

)3 + 2
(

1
2

)2 + 1
2 = 5

4 > 1. Therefore, x < 1
2 . From

eq. (3.4) follows y > 22y4, from which follows y < 22−1/3 < 2
5 . Then from

eq. (3.3), 1 < 49
25x + 18

5 x2 + 2x3. The right hand side of this inequality is
increasing in x, and its value at x = 1

4 is 597
800 < 1. Therefore, x > 1

4 . Let
I =
(

1
4 , 1

2

)
. If (x, y) is a fixed point, then x ∈ I.

Let
g1(x, y) = y4 + 22−1(4x3y − y + x4) ,

and
g2(x, y) = y2 +

2
3
xy + (6x)−1(2x3 + 2x2 + x − 1) .

Then the set of fixed point conditions eq. (3.3) and eq. (3.4) is, for x > 0 and
y ≥ 0, equivalent to a set of conditions g1(x, y) = g2(x, y) = 0. Note that

g1(x, y) = g2(x, y) × {y2 − 2
3
xy +

4
9
x2 − (6x)−1(2x3 + 2x2 + x − 1)} + h(x, y) ,

where,

h(x, y) = 594−1h1(x)y + 1188−1x−2h2(x) ,

h1(x) = −159 + 132x + 264x2 + 196x3 ,

h2(x) = 33 − 66x − 99x2 + 88x3 + 176x4 + 88x5 + 10x6 .

h1(x) is increasing in x and h1(1
2 ) = − 5

2 , so that h1(x) �= 0 for x ∈ I =
(

1
4 , 1

2

)
.

Therefore, the set of conditions g1(x, y) = g2(x, y) = 0 is equivalent to a set of
conditions, g2(x, y) = 0 and

y = −2−1x−2h1(x)−1
h2(x) .(3.5)

Substituting eq. (3.5) into g2(x, y) = 0 and noting that x > 0 and h1(x) �= 0 for
the fixed points, one sees that the condition g2(x, y) = 0 is equivalent to

(x − 1
3
) f(x) = 0 ,
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where

f(x) = 19239 − 35211x − 112167x2 − 41179x3 + 518440x4 + 725492x5

+ 2124x6 − 2096944x7 − 3168164x8 − 1048100x9 + 3320820x10

+ 5564268x11 + 4315264x12 + 1787888x13 + 353584x14 .

A computer calculation was used here (and also in the following) to handle large
coefficients. If x = 1

3 , then it follows from eq. (3.5) that y = 1
3 . Therefore (1

3 , 1
3 )

is a fixed point.
From the preceding arguments, a necessary and sufficient condition for (x, y)

to be a fixed point satisfying x > 0, y > 0, and x �= 1
3 , is f(x) = 0 and eq. (3.5).

It has also been proved above that if (x, y) is a fixed point satisfying x > 0, y > 0,
then x ∈ I =

(
1
4 , 1

2

)
, and that h1(x) �= 0. Assume that x ∈ I in the following.

Denote by f (n), the n-th derivative of f . Since

f (9)(x) = −262025 + 8302050x + 76508685x2 + 237339520x3

+ 319584980x4 + 176968792x5 ,

f (9)(x) is increasing for x ∈ I. This with f (9)(1/4) = 1500788509/128 > 0
implies f (9)(x) > 0 , x ∈ I, hence f (8)(x) is increasing for x ∈ I.

Similarly, since f (8)(1/4) = 51984265459/128 > 0, and f (7)(1/4) = 6064495535/512 >
0, f (6)(x) is increasing for x ∈ I. f (6)(1/4) = −17104786191/16384 < 0 and
f (6)(1/2) = 2781099317/64 > 0. Therefore there exists an x1 ∈ I such that
f (5)(x) is decreasing for x < x1 and increasing for x > x1. f (5)(1/4) =
−148288007935/32768 < 0 and f (5)(1/2) = 2507283275/32 > 0. Therefore
there exists an x2 ∈ I such that f (4)(x) is decreasing for x < x2 and in-
creasing for x > x2. f (4)(1/4) = −25860012481/262144 < 0 and f (4)(1/2) =
742821129/256 > 0. Therefore there exists an x3 ∈ I such that f (3)(x) is de-
creasing for x < x3 and increasing for x > x3. f (3)(1/4) = 96806613501/32768 >
0, f (3)(1/2) = 81366081/32 > 0, and f (3)(3/8) = −124154731777731/67108864 <
0. Therefore there exist x4 ∈ I and x5 ∈ I such that x4 < 3/8 < x5 and
that f (2)(x) is increasing for x < x4, decreasing for x4 < x < x5, and in-
creasing for x > x5. f (2)(1/4) = 106573809241/524288 > 0 and f (2)(1/2) =
−2264445/128 < 0. Therefore there exists an x6 ∈ I such that f (1)(x) is increas-
ing for x < x6 and decreasing for x > x6. f (1)(1/4) = −120599934157/2097152 <
0 and f (1)(1/2) = 14625/256 > 0. Therefore there exists an x7 ∈ I such that
f(x) is decreasing for x < x7 and increasing for x > x7. Finally, f(1/4) =
89607188671/16777216 > 0 and f(1/2) = −125/1024 < 0. Therefore there
exists one and only one xc ∈ I such that f(x) = 0.

From eq. (3.5), yc
def= −2−1xc

−2h1(xc)
−1h2(xc) is uniquely determined.

Since f(3/7) = 216853862622/96889010407 > 0, the above arguments imply
3
7 < xc < 1

2 . From 3
7 < xc and eq. (3.3), it follows that

yc
2 +

2
7
yc −

8
441

< 0 ,
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which imply yc <
√

17−3
21 <

(
3
7

)2
< xc

2. This completes the proof. �

Remark.

(1) By the same arguments as the proof of 3
7 < xc and yc <

√
17−3
21 , it is not

difficult to obtain (xc, yc) to an arbitrary precision. For example, one can
prove 0.4294449 < xc < 0.42944491 and 0.0499839 < yc < 0.049984.

(2) xc is not a rational number. This may be proved by standard arguments
using the explicit form of f(x).

Define (xn(x, y), yn(x, y)), n = 0, 1, 2, 3, . . ., inductively by (x0(x, y), y0(x, y)) =
(x, y) and (xn+1(x, y), yn+1(x, y)) = �φ(xn(x, y), yn(x, y)). From eq. (2.2), it fol-
lows that (xn(x, y), yn(x, y)) is �Xn(�x) with �x restricted to the x1–x2 plane:
(xn(x, y), yn(x, y)) = (ι−1 ◦ �Xn ◦ ι)(x, y).

Let D(2) = {(x, y) ∈ R2
+ | sup

n∈Z+

(xn(x, y) + yn(x, y)) < ∞}. Define also

D(2) c, D(2) o, and ∂D(2), to be the exterior, interior, and boundary, of D(2)

in R2
+, respectively. Notice the slight difference in the previous definition of

D. The condition x2 ≥ y is dropped here and the whole first quadrant is
considered. Let Ξ(2)

0 = {(x, y) ∈ R2
+ | x2 ≥ y}. Then from the definition

of D, D(2) ∩ Ξ(2)
0 is the restriction of D to the x1–x2 plane: D(2) ∩ Ξ(2)

0 =
ι−1(D). Note also that Proposition 2.1 (2) implies �φ(Ξ(2)

0 ) ⊂ Ξ(2)
0 . Define also

D′ (2) = {(x, y) ∈ R2
+ | sup

n∈Z+

max{xn(x, y), yn(x, y)} ≤ 1}, and D̃(2) = {(x, y) ∈

R2
+ | lim

n→∞
max{xn(x, y), yn(x, y)} = 0}.

Proposition 3.2. (1) D(2) is a closed set in R2
+ satisfying D(2) = D′ (2).

The interior of D(2) satsifies D(2) o = D̃(2). They are invariant sets of �φ:

�φ(D(2) o) ⊂ D(2) o , �φ(∂D(2)) ⊂ ∂D(2) , and �φ(D(2) c) ⊂ D(2) c .

(2) There exist a positive constant c and a continuous strictly decreasing
function p : [0, c] → R such that ∂D(2) = {(x, p(x)) | x ∈ [0, c]}. For
(x, y) ∈ R2

+ it holds that (x, y) ∈ D(2) if and only if y ≤ p(x).

Proof. The assertion (1) may be proved in exactly the same way as Proposi-
tion 2.2, if one notes the explicit formula eq. (3.1) and eq. (3.2). Let (x, y) ∈ R2

+

in the following. From eq. (3.1) and eq. (3.2) it follows that (0, y) ∈ ∂D(2) if
and only if y = 22−1/3.

Assume that x > 0 and (x, y) ∈ ∂D(2). If y′ > y, then eq. (3.1) and eq. (3.2)
imply φ1(x, y′) > φ1(x, y) and φ2(x, y′) > φ2(x, y). Let

r = min
{

φ1(x, y′)
φ1(x, y)

,
φ2(x, y′)
φ2(x, y)

}
> 1 .
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Then from eq. (3.1) and eq. (3.2), it follows by induction that

xn(x, y′) ≥ r2n−1
xn(x, y) , n = 1, 2, 3, . . . ,

and
yn(x, y′) ≥ r2n−1

yn(x, y) , n = 1, 2, 3, . . . ,

which imply (x, y′) ∈ D(2) c. If y′ < y, then just in the same way as in the above
argument, it follows that (x, y′) ∈ D(2) o. Therefore for each x ≥ 0, there exists
at most one y ≥ 0 such that (x, y) ∈ ∂D(2).

Let J = {x ≥ 0 | there exists y ≥ 0 such that (x, y) ∈ ∂D(2)}, and define a
function p : J → R by (x, p(x)) ∈ ∂D(2). The above arguments prove that p
is well-defined, and that if y < p(x) then (x, y) ∈ D(2) o, while if y > p(x) then
(x, y) ∈ D(2) c.

Let x ∈ J , x′ ∈ J , and x′ > x. Put y = p(x) and y′ = p(x′). If y′ ≥ y,
then from eq. (3.1) and eq. (3.2) φ1(x′, y′) > φ1(x, y) and φ2(x′, y′) > φ2(x, y),
hence as in the previous arguments, (x′, y′) ∈ D(2) c follows. Therefore y′ < y,
which proves that the function p is strictly decreasing.

Now D(2) is a closed set in R2
+ and eq. (3.1) implies that if x ≥ 1

2 and y ≥ 0
then (x, y) ∈ D(2) c, hence ∂D(2) intersects the x-axis. Therefore, there exists
a positive constant c such that p(c) = 0. If x > c and y ≥ 0, then φ1(x, y) >
φ1(c, 0) and φ2(x, y) > φ2(c, 0), so that (x, y) ∈ D(2) c. Therefore if x > c then
x �∈ J . If x < c then the same argument as before implies (x, 0) ∈ D(2) o, while
(x, 1) ∈ D(2) c. Therefore there exists a y such that (x, y) ∈ ∂D(2), hence x ∈ J .
This proves that J = [0, c]. Since by construction ∂D(2) = {(x, p(x)) | x ∈ [0, c]},
the continuity of p follows from the fact that ∂D(2) is the boundary of D(2).
This completes the proof. �

A numerically obtained shape of D(2) together with the fixed points of �φ is given
in Figure 2 (the black dots in the figure represent the fixed points).

If (x, y) ∈ D(2) o, then Proposition 3.2 (1) implies lim
n→∞

xn(x, y) = 0 and

lim
n→∞

yn(x, y) = 0. If (x, y) ∈ D(2) c, then from Proposition 3.2 (1) and the ex-

plicit recursion formula eq. (3.1) and eq. (3.2) it easily follows that lim
n→∞

yn(x, y) =

∞, and lim
n→∞

xn(x, y) = 0 if x = 0 and lim
n→∞

xn(x, y) = ∞ if x �= 0. The con-

vergence of the sequence {(xn(x, y), yn(x, y))} , n = 1, 2, 3, . . . , for the case
(x, y) ∈ ∂D(2), is not obvious from previous arguments alone, because the se-
quence may either converge to one of the fixed points, or approach a non-trivial
attractor. However, the next two propositions show that the latter is not the
case.

Proposition 3.3. Let (x1, y1) ∈ ∂D(2) and (x2, y2) ∈ ∂D(2) . If x1 < x2 , then
φ1(x1, y1) < φ1(x2, y2) .
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Proof. The mapping �φ is a C∞ mapping. Its differential J is, from eq. (3.1)
and eq. (3.2),

J (x, y) =
(

φ1,x(x, y) φ1,y(x, y)
φ2,x(x, y) φ2,y(x, y)

)
(3.6)

=
(

2x + 6x2 + 8x3 + 12x2y + 12xy2 4x3 + 12x2y
4x3 + 12x2y 4x3 + 88y3

)
.

Therefore the Jacobian is,

detJ (x, y) = 8x(2x5 + 3x4 + x3 − 6x4y − 12x3y2

+ 132y5 + 132xy4 + 88x2y3 + 66xy3 + 22y3)
= 8x(3x4 + x3 + 132y5 + 88x2y3 + 66xy3 + 22y3

+ x3(x − 3y)2 + x(x2 − 21
2

y2)2 +
87
4

xy4) .

Since (0, 0) ∈ D(2) o and ∂D(2) is a closed set, it follows that there exists a
positive constant ε1 such that

detJ (x, y) > ε1 , (x, y) ∈ ∂D(2) .(3.7)

Denote by Uε(x, y) the ε-neighborhood of (x, y) in R2
+. The mapping �φ is a

C∞ mapping on R2
+, and detJ (x, y) > 0 if (x, y) ∈ ∂D(2). Therefore for each

(x, y) ∈ ∂D(2) there exists a positive number ε(x, y) such that �φ, when restricted
to Uε(x, y)(x, y), is a diffeomorphism of class C∞. Let P = (x0, y0) ∈ ∂D(2)

and ε = ε(x0, y0). By Proposition 3.2 (2), p(x0) = y0. The line segment of the
line x = x0 inside U = Uε(x0, y0) is mapped onto a smooth curve which cuts
the domain �φ(U) into two pieces. By Proposition 3.2 (1), this curve intersects
∂D(2) at one point �φ(P ). Put U1 = U ∩ {x < x0} , which is the left half of U ,
and U2 = U ∩ {x > x0} , the right half of U . Likewise denote by U ′

1 the piece of
�φ(U) which contains the points of ∂D(2) which satisfy x < φ1(x0, y0), and the
other piece by U ′

2. Then U1 is mapped by �φ onto either U ′
1 or U ′

2, and U2 is
mapped onto the other piece.

Let 0 < ε′ < ε and put Q = (x0 + ε′, y0) , R = (x0, y0 + ε′) . Denote
by P ′ , Q′ , R′ , the images of P , Q , R , by �φ, respectively. Put �e1 = �PQ,
�e2 = �PR, �e′1 = �P ′Q′, and �e′2 = �P ′R′. Define �e1 × �e2

def= e1,xe2,y − e1,ye2,x.
Proposition 3.2 (1) implies that if (x0, y0) ∈ ∂D(2), then x0 ≤ 1 and y0 ≤
1. Therefore from eq. (3.1) and eq. (3.2), there exists a positive constant M
independent of (x, y) and ε′ such that

|�e′1 × �e′2 − (detJ (x0, y0))�e1 × �e2|
= |(φ1(x0 + ε′, y0) − φ1(x0, y0))(φ2(x0, y0 + ε′) − φ2(x0, y0))

− (φ2(x0 + ε′, y0) − φ2(x0, y0))(φ1(x0, y0 + ε′) − φ1(x0, y0))
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− (detJ (x0, y0))ε′
2)|

≤ Mε′
3
.

By eq. (3.7) detJ (x0, y0) > ε1 . Therefore for sufficiently small ε2 it follows
that if 0 < ε′ < ε2 then

(detJ (x0, y0))�e1 × �e2 = (detJ (x0, y0))ε′
2

> Mε′
3
,

which implies that if ε′ < ε2 then �e′1 × �e′2 and �e1 × �e2 have the same sign. On
the other hand, by Proposition 3.2 (2) R ∈ D(2) c, and by Proposition 3.2 (1)
R′ ∈ D(2) c, so that R′ is above the curve y = p(x). Therefore Q′ is contained
in the piece that contains the points in ∂D(2) with x > φ1(x0, y0), that is the
piece U ′

2. Therefore, �φ(U i) = U ′
i , i = 1, 2 . In particular, for (x, y) ∈ ∂D(2) ∩U ,

if x > x0 then φ1(x, y) > φ1(x0, y0), and if x < x0 then φ1(x, y) < φ1(x0, y0).
Therefore, for each point (x, y) ∈ ∂D(2) , there exists an ε-neighborhood

U(x) such that if (x′, y′) ∈ ∂D(2)∩U(x) , then the order of x and x′ is conserved
by the map �φ.

Now assume that (x1, y1) ∈ ∂D(2) , (x2, y2) ∈ ∂D(2) , and x1 < x2 . Since
{U(x) | x1 ≤ x ≤ x2} is an open ball covering of the closed set ∂D(2) ∩ {x1 ≤
x ≤ x2} , one can choose a finite number of U(x)s’, say U1, U2, . . . , Un , that
covers the set ∂D(2) ∩ {x1 ≤ x ≤ x2} . It is further possible to choose them in
such a way that none of the U i is included in some other Uj . Arrange the balls
in a way that the x-coordinates x1, x2, x3, . . . , xn of the centers of the balls
are in increasing order. For each i = 1, 2, . . . , n−1, take x′

i ∈ U i∩U i+1∩∂D(2) .
Then the order of the points

x1 < x′
1 < x2 < x′

2 < . . . < x′
n−1 < xn

is conserved by �φ. Since (x1, y1) ∈ U1 and (x2, y2) ∈ Un , it follows that the
order of x1 and x2 is conserved by �φ, that is, φ1(x1, y1) < φ1(x2, y2) . This
completes the proof. �

Proposition 3.4. If (x, y) ∈ ∂D(2), then (xn(x, y), yn(x, y)) converges to one
of the fixed points of the mapping �φ as n → ∞. In particular, if (x, y) ∈
∂D(2) ∩ Ξ(2)

0 , then lim
n→∞

(xn(x, y), yn(x, y)) = (xc, yc), where (xc, yc) is as given
in Proposition 3.1.

Proof. Assume that (x, y) ∈ ∂D(2) and that the sequence {(xn(x, y), yn(x, y))} ,
n = 1, 2, 3, . . . , has an accumulation point (x1, y1) which is not a fixed point.
Put (x2, y2) = �φ(x1, y1). Since (x1, y1) is not a fixed point, x1 �= x2.

Assume first that x2 > x1. The continuity of �φ implies that for any pos-
itive number δ there exists a positive number ε such that the ε-neighborhood
Uε(x1, y1) is mapped into the Uδ(x2, y2). In particular, there exists ε > 0
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such that if (x, y) ∈ Uε(x1, y1), then φ1(x, y) > x1. But if (x, y) ∈ ∂D(2)

and x > x1, then Proposition 3.3 implies φ1(x, y) > x2 > x1 . By induction,
if (x, y) ∈ Uε(x1, y1), then φ1(�φ

n
(x, y)) > x2 , n = 1, 2, 3, . . . , where �φ

n
is

the n-th iteration of �φ. By assumption, the sequence {(xn(x, y), yn(x, y))} , n =
1, 2, 3, . . . , accumulates at (x1, y1), therefore there exists an integer N such that
(xN (x, y), yN (x, y)) ∈ Uε(x1, y1). Therefore if n > N then φ1(xn(x, y), yn(x, y)) >
x2 > x1, which says that (x1, y1) cannot be an accumulation point, which is a
contradiction. The case x2 < x1 can be handled in the same way. The con-
clusion is that if (x, y) ∈ ∂D(2) then every accumulation point of the sequence
{(xn(x, y), yn(x, y))} , n = 1, 2, 3, . . . , is a fixed point.

If (x, y) ∈ ∂D(2) ∩ Ξ(2)
0 , then from �φ(Ξ(2)

0 ) ⊂ Ξ(2)
0 it follows that the se-

quence (xn(x, y), yn(x, y)) accumulates at a fixed pont in Ξ(2)
0 . Proposition 3.1

therefore implies lim
n→∞

(xn(x, y), yn(x, y)) = (xc, yc), where (xc, yc) is as given in
Proposition 3.1. This completes the proof. �

The original problem of four dimensional parameter space is now considered.

Theorem 3.5.

lim
n→∞

�Xn(�x) = (0, 0, 0, 0) , �x ∈ Do ∩ Ξ ,

lim
n→∞

�Xn(�x) = (∞,∞,∞,∞) , �x ∈ Dc ∩ Ξ ,

lim
n→∞

�Xn(�x) = (xc, yc, 0, 0) , �x ∈ ∂D ∩ Ξ .

Here, xc and yc are as given in Proposition 3.1.

Proof. The first two cases are direct consequences of Proposition 2.2 and Propo-
sition 2.1. Consider the case �x ∈ ∂D ∩ Ξ. Since ∂D is a closed set, the se-
quence { �Xn(�x)} has an accumulation point in ∂D. From Proposition 2.4 (2)
and Proposition 2.2 (1) follows lim

n→∞
Xi,n(�x) = 0 , i = 3, 4. Therefore every accu-

mulation point of { �Xn(�x)} is in ι(∂D(2) ∩ Ξ(2)
0 ). Denote an accumulation point

of the sequence by ι(�y), �y ∈ ∂D(2) ∩ Ξ(2)
0 . Let { �Xk1(n)(�x)} , n = 1, 2, 3, . . .,

be a subsequence of { �Xn(�x)} that converges to ι(�y). By the same reason-
ing, every accumulation point of { �Xk1(n)−1(�x)} is in ι(∂D(2) ∩ Ξ(2)

0 ). Denote
one of the points by ι(�z1), �z1 ∈ ∂D(2) ∩ Ξ(2)

0 , and let { �Xk1(k2(n))−1(�x)} , n =
1, 2, 3, . . ., be a subsequence of { �Xk1(n)−1(�x)} that converges to ι(�z1). By defi-
nition �Xk1(k2(n))(�x) = �Φ( �Xk1(k2(n))−1(�x)), and �Φ is a continuous map, therefore
it follows that �y = �φ(�z1), where �φ is defined at the beginning of the section.
By induction, one obtains a sequence of points {�z�}, � = 1, 2, 3, . . ., such that
�z� ∈ ∂D(2) ∩ Ξ(2)

0 , � = 1, 2, 3, . . ., and �y = �φ(�z1), �z� = �φ(�z�+1), � = 1, 2, 3, . . ..
Since ∂D(2) ∩ Ξ(2)

0 is a closed set, every accumulation point of the sequence
{�z�}, � = 1, 2, 3, . . ., is in ∂D(2) ∩ Ξ(2)

0 . Let �w ∈ ∂D(2) ∩ Ξ(2)
0 be one of
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the accumulation points. Assume that �w is not a fixed point of the map �φ:
�w′ def= �φ(�w) �= �w. Since �φ is a continuous map, �w′ is an accumulation point of
{�φ(�z�)} = {�z�−1} , � = 2, 3, . . .. Assume that w1 > w′

1 , where �w = (w1, w2).
Proposition 3.3 implies that if there exists an � such that z�,1 > w′

1 , then
z�+1,1 = φ−1

1 (�z�) > w1 > w′
1 , and consequently, �z�+n = φ−n

1 (�z�) > w1 >
w′

1 , n ∈ Z+ . This contradicts the fact that �w′ is an accumulation point. Thus
z�,1 ≤ w′

1 for all � ∈ Z+ . But this contradicts the fact that �w is also an accu-
mulation point. The case w1 < w′

1 may be handled in a similar manner and a
contradiction occurs. Therefore w1 = w′

1 , hence �w = �w′ .
Therefore every accumulation point �w of the sequence {�z�}, � = 1, 2, 3, . . .,

is a fixed point of the map �φ in ∂D(2) ∩ Ξ(2)
0 . By Proposition 3.1 the only

fixed point in ∂D(2) ∩ Ξ(2)
0 is (xc, yc). Hence the sequence {�z�}, � = 1, 2, 3, . . .,

converges to (xc, yc) as � → ∞.
It is proved that there is a sequence �z�, � = 1, 2, 3, . . ., satisfying �z� ∈

∂D(2) ∩ Ξ(2)
0 , � = 1, 2, 3, . . ., and �y = �φ(�z1), �z� = �φ(�z�+1), � = 1, 2, 3, . . .,

and lim
�→∞

�z� = (xc, yc). On the other hand, Proposition 3.3 implies that for

(x, y) ∈ ∂D(2), if x > φ1(x, y) then φ1(x, y) > φ1(�φ(x, y)), and if x < φ1(x, y)
then φ1(x, y) < φ1(�φ(x, y)). This with Proposition 3.4 implies that φ1(�φ

n
(x, y))

approaches xc monotonically as n → ∞. If �y �= (xc, yc) , this is a contradic-
tion. Therefore �y = (xc, yc), which implies that the only accumulation point
of { �Xn(�x)} is (xc, yc). Therfore �Xn(�x) converges as n → ∞ to (xc, yc). This
completes the proof. �

Let

Zi,n(β) =
∑

w∈W
(n)
i

exp(−β L(w)) , β ∈ R , i = 1, 2, 3, 4 , n ∈ Z+ .(3.8)

Then �Zn(β) = �Xn(exp(−β), exp(−2β), exp(−2β), exp(−3β)) .

Corollary 3.6. There exists a constant βc such that

lim
n→∞

�Zn(β) = (0, 0, 0, 0) , β > βc ,

lim
n→∞

�Zn(β) = (xc, yc, 0, 0) , β = βc ,

lim
n→∞

�Zn(β) = (∞,∞,∞,∞) , β < βc .

The proof of Theorem 1.1 is as follows. Note that

W ∗(n) = W
(n)
1 ∪ W

(n)
3 ∪ W

(n)
4 ∪ W ′(n)

3 ∪ W ′(n)
4 ,

where W
(n)
i , i = 1, 2, 3, 4, is defined at the beginning of Section 2, and W ′(n)

4 in
the proof of Proposition 2.1, and

W ′(n)
3 = {w ∈ W (n,O,an) | w(Z+) ∩ {bn, cn} = {cn}} .
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Therefore, Z∗
n = Z1,n +2Z3,n +2Z4,n follows, which, with Corollary 3.6, implies

Theorem 1.1.

The first derivatives of �Φ are used to study the distributions of path lengths.
Let �a = (a1, a2, a3, a4) = (xc, yc, 0, 0) and

B = (
∂t�Φ
∂x1

(�a) , . . . ,
∂t�Φ
∂x4

(�a)) .(3.9)

Proposition 3.7. (1) The matrix B has a form

B =

⎛⎜⎜⎝
p q B13 B14

q r B23 B24

0 0 B33 B34

0 0 0 0

⎞⎟⎟⎠ ,

with
p = 8x3

c + 6x2
c + 2xc + 12x2

cyc + 12xcy
2
c ,

q = 4x3
c + 12x2

cyc ,

and
r = 4x3

c + 88y3
c .

Every element is non-negative, and the four elements Bij , i = 1, 2, j =
3, 4, are positive.

(2) Denote the four eigenvalues of B by λi , i = 1, 2, 3, 4 . Then one can
arrange the order of the eigenvalues so that they satisfy

λ1 > 1 > λ2 > λ3 > λ4 = 0 ,

and B33 = λ2 . In particular, B is diagonalizable by an invertible matrix
P : P−1BP = diag(λ1, λ2, λ3, 0) .

Proof. The four elements Bij , i = 1, 2, j = 1, 2, are obtained from Propo-
sition 2.1 (3). Proposition 2.1 (6) implies B1j ≥ xc > 0 , j = 3, 4, and
B2j ≥ xc

2 > 0 , j = 3, 4, and B4j = 0 , j = 1, 2, 3, 4. The non-negativity
of elements are obvious.

It is easy to see that the four eigenvalues are
1
2
{p + r +

√
(p − r)2 + 4q2} =

2.7965 . . . ,
1
2
{p + r −

√
(p − r)2 + 4q2} = 0.2537 . . . , B33, and 0 . The numer-

ical values are derived by the estimates for xc and yc given in the remark after
Proposition 3.1.

From Proposition 2.1 (5) one has B33 = Φ3,1(�a) . From Proposition 2.1 (5)
and the fact that �a is a fixed point it follows that Φ3,1(�a) ≤ 1 − xc < 1 . From
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Proposition 2.1 (4) one has B33 ≥ xc
2 + 2xc

3 = 0.3428 . . . . This completes the
proof. �

Remark. The explicit form of B obtained using the explicit form of the recursion
relations, is shown in Appendix B.

Let
Ξ1

def= Ξ ∪ ι(Ξ(2)
0 ) ⊂ Ξ0 .(3.10)

Proposition 3.4 and Theorem 3.5 imply that if �x ∈ ∂D∩Ξ1 , then lim
n→∞

�Xn(�x) =

(xc, yc, 0, 0) .

The following proposition states how �Xn(�x) converges to (xc, yc, 0, 0) as n →
∞. Though the proof is similar to that for the case of diffeomorphisms in [5],
we give a proof here for readers’ convenience.

Proposition 3.8. Assume �x ∈ ∂D ∩ Ξ1 . Then there are positive constants C
and ρ, 0 < ρ < 1, such that

|Xi,n(�x) − ai| < Cρn , i = 1, 2, 3, 4, n ∈ Z+ .

Proof. �Φ(�x) can be expressed as

t�Φ(�x) = t�a + B t(�x − �a) + t�θ(�x − �a),

where �θ : R4 → R4 satisfies, for �x ∈ R4and |�x − �a| ≤ 1,

|�θ(�x − �a)| < C1|�x − �a|2,(3.11)

with a positive constant C1. R4 splits into �Φ -invariant stable and unstable
subspaces

R4 = Vs

⊕
Vu,

where Vs is spanned by the eigenvectors corresponding to λ2, λ3 and 0, and Vu

by that corresponding to λ1, where λis’ are as in Proposition 3.7. Denote the
restrictions of B to Vs and Vu by Bs and Bu, respectively. For �x ∈ R4 define
norms

|�x|∗ def= |P−1�x|,

|�x|o def= max{|�xs|∗, |�xu|∗},
and for an 4 × 4 matrix A,

||A||∗ def= sup
|�x|∗=1

|A�x|∗.

Let
α

def= max{||Bs||∗, ||B−1
u ||∗} < 1 .
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Take κ > 0 such that α + κ < 1. Then by eq. (3.11) there is a δ, 0 < δ < 1,
such that

|�θ(�x − �a)|o < κ|�x − �a|o,
for

|�x − �a|o < δ.

Assume that �x ∈ ∂D ∩ Ξ1 . Then there is an n0 such that

| �Xn(�x) − �a|o < δ,

for n ≥ n0. Let �x0 = �Xn0(�x) .
Consider

�Φ(�x0) − �a = (�Φ(�x0) − �a)s + (�Φ(�x0) − �a)u.

Then

|(�Φ(�x0) − �a)s|∗ ≤ ||Bs||∗|(�x0 − �a)s|∗ + κ|�x0 − �a|o
≤ (α + κ)|�x0 − �a|o.

Suppose that |�x0 − �a|o = |(�x0 − �a)u|∗. Then

|(�Φ(�x0) − �a)u|∗ ≥ (α−1 − κ)|�x0 − �a|o
> (α + κ)−1|�x0 − �a|o.

By induction,
| �Xn(�x0) − �a|o ≥ (α + κ)−n|�x0 − �a|o.

Since (α+κ)−n → ∞ as n → ∞, this leads to a contradiction. Thus, |�x0−�a|o =
|(�x0 − �a)s|∗.

A similar argument shows that |�Φ(�x0)−�a|o = |(�Φ(�x0)−�a)s|∗ . Thus |�Φ(�x0)−
�a|o ≤ (α + κ)|�x0 − �a|o . By induction it follows that

| �Xn(�x0) − �a|o ≤ ρn|�x0 − �a|o,

where ρ = α + κ, 0 < ρ < 1. Thus for each �x ∈ ∂D ∩ Ξ1 there is a positive
constant C′ such that

| �Xn(�x) − �a|o ≤ C′ρn,

for all n ∈ Z+. This completes the proof. �
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4 Limit Theorem for distribution of path lengths

First we define probability measures µn(�x), µ1,n(�x), and νn(�x) on W ∗(n) , W
(n)
1 ,

and W
(n)
2 , respectively. W ∗(n) is defined in Section 1, and W

(n)
1 and W

(n)
2 in

Section 2. Each measure is parametrized by �x = (x1, x2, x3, x4) taking values
in R4

+ \ {(0, 0, 0, 0)}. To each w ∈ W ∗(n), we assign the weight

µn(�x)[w] def= {X1,n(�x) + 2X3,n(�x) + 2X4,n(�x)}−1
4∏

i=1

x
si(w)
i ,

to each w ∈ W
(n)
1 ,

µ1,n(�x)[w] def= {X1,n(�x)}−1
4∏

i=1

x
si(w)
i ,

and to each w ∈ W
(n)
2 ,

νn(�x)[w] def= {X2,n(�x)}−1
4∏

i=1

x
si(w)
i ,

where si(w) and Xi,n(�x), i = 1, . . . , 4, n ∈ Z+ are defined in Section 2.
Our objective in this section is to study the asymptotic distribution of path

lengths L(w) under µn(�x), µ1,n(�x) and νn(�x), respectively, as n tends to infinity.
Each element of W

(n)
2 consists of two path segments. Since we want to deal with

these segments separately, we define, for w = (w1, w2) ∈ W
(n)
2 ,

s̃9(w) = s2(w) − s2(w1) − s2(w2),

s̃1(w) = s1(w1) − s̃9(w),

s̃2(w) = s2(w1),

s̃3(w) = s3(w1),

s̃4(w) = s4(w1),

s̃5(w) = s1(w2) − s̃9(w),

s̃6(w) = s2(w2),

s̃7(w) = s3(w2),

s̃8(w) = s4(w2).

Note that

L(w1) = s̃1(w) + 2s̃2(w) + 2s̃3(w) + 3s̃4(w) + s̃9(w),(4.1)
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L(w2) = s̃5(w) + 2s̃6(w) + 2s̃7(w) + 3s̃8(w) + s̃9(w).(4.2)

Let Yn be another generating function for W
(n)
2 defined by

Yn(z) def=
∑

w∈W
(n)
2

9∏
i=1

x
s̃i(w)
i ,

where
z = (�z1, �z2, x9) ∈ C9,

�z1 = (x1, x2, x3, x4),

�z2 = (x5, x6, x7, x8).

Yn satisfies the following recursion relation.

Yn+1(z) = Y1( ( �Xn(�z1), �Xn(�z2), Yn(z)) ).

We also have
Y1( (�z1, �z1, x2) ) = Φ2(x1, x2, x3, x4).(4.3)

We start out with

H(n)(z) = (H(n)
1 (z), . . . , H(n)

9 (z))
def= ( �Xn(�z1), �Xn(�z2), Yn(z)).

Let ∂H(n)(z) be an 9 × 9 matrix defined by

∂H(n)(z) def= (
∂

∂x1

tH(n)(z), . . . ,
∂

∂x9

tH(n)(z)).

Since the recursion relations imply,

H(n)(z) = H(1)(H(n−1)(z)),(4.4)

we have

∂H(n)(z) = ∂H(1)(H(n−1)(z)) ∂H(1)(H(n−2)(z)) · · · ∂H(1)(z).(4.5)

Throughout this section, we write,

a = (a1, . . . , a9)
def= (xc, yc, 0, 0, xc, yc, 0, 0, yc).

We have, in particular,
H(n)(a) = a,

∂H(n)(a) = (∂H(1)(a))n.
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Proposition 4.1. (1) All the eigenvalues of ∂H(1)(a) are non-negative. The
largest of them, λ, is a double eigenvalue with corresponding left eigenvec-
tors (α1, α2, α3, α4, 0, 0, 0, 0, 0) and (0, 0, 0, 0, α1, α2, α3, α4, 0) ,
satisfying αi > 0 , i = 1, 2, 3, 4. Any other eigenvalue is less than 1.

(2)

lim
n→∞

λ−n(∂H(1)(a))n = Λ(a)

exists. The (i, j)-element of Λ(a) , Λij(a), is non-negative for i = 1, . . . , 9, j =
1, . . . , 9. In particular, Λ11(a) > 0 and Λ91(a) > 0.

Proof. It is easy to see that ∂H(1)(a) has the form

∂H(1)(a) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B O
0
0
0
0

O B
0
0
0
0

q
2 C1

B23
2

B24
2

q
2 C1

B23
2

B24
2 r − 2C1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(4.6)

where C1 is a constant satisfying 0 ≤ C1 ≤ r

2
. The 4 × 4 matrix B and the

positive constant r are defined in Proposition 3.7. ∂H(1)(a) has four double
eigenvalues λ1 , λ2 , λ3 , 0 , and a single enenvalue r−2C1 . Note that λ1 > r =
0.3277 . . . ≥ r − 2C1 . It is also easy to show that the right and left eigenvectors
of B corresponding to λ1 can be chosen as t(α1, α2, 0, 0) and (α1, α2, α3, α4) ,
with αi > 0 , i = 1, 2, 3, 4, α2

1 + α2
2 = 1 . The assertion (1) follows with λ = λ1 .

There is an invertible matrix P̃ such that

P̃−1∂H(1)(a)P̃ = diag(λ, λ2, λ3, 0, λ, λ2, λ3, 0, r − 2C1) ,

and that the first and the fifth columns of P̃ are t(α1, α2, 0, · · · , 0, C2) and
t(0, 0, 0, 0, α1, α2, 0, 0, C2) , C2 > 0, respectively, and that the first row of
P̃−1 is (α1, α2, α3, α4, 0, · · · , 0) . Combining these with

lim
n→∞

P̃−1λ−n(∂H(1)(a))nP̃ = diag(1, 0, 0, 0, 1, 0, 0, 0, 0) ,

one has the assertion (2). In particular, Λ11(a) = α2
1 and Λ91(a) = C2α1 . This

completes the proof. �

From the proof of Proposition 3.7, we have λ = 2.7965 · · ·.
In studying the limit of λ−n(∂H(1)(z))n for more general z, we make use of

the following lemma. It can be proved in a similar fashion to Lemma(3.1) in [3].
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Lemma 4.2. Let A,An, n = 1, 2, . . . , be N × N matrices. Assume that there
is an invertible N × N matrix P such that P−1AP = diag(λ1, . . . , λN ), λi ≥
0, i = 1, . . . , N, λmax = maxλi > 0. Assume further that

∞∑
n=1

||An − A|| < ∞.

Then
lim

m→∞
lim sup

n→∞
||λ−n

max(An+mAn+m−1 · · ·Am+1) − Q|| = 0,(4.7)

where P−1QP = diag(q1, . . . .qN ) with qi = 1 if λi = λmax and qi = 0 otherwise.
Moreover, lim

n→∞
λ−n

maxAn · · ·A1 exists.

Let Ξ1 be as in eq. (3.10) and

Γ = {z = (x1, x2, x3, x4, x1, x2, x3, x4, x2) | (x1, x2, x3, x4) ∈ ∂D ∩ Ξ1} .

Proposition 4.3. Let z = (z1, . . . , z9) ∈ Γ. Then lim
n→∞

λ−n∂H(n)(z) = Λ(z)

exists, and Λij(z) ≥ 0 for i = 1, . . . , 9, j = 1, . . . , 9. In particular, Λ11(z) > 0
and Λ91(z) > 0 .

Proof. By the mean-value theorem,

∂Hij(z) − ∂Hij(a) =
9∑

k=1

(
∂

∂zk
∂Hij)(u) · (zk − ak),(4.8)

where
u = a + θ(z − a), 0 < θ < 1.

Since Γ is a bounded region in R9 and
∂

∂zk
∂Hij(z) is a polynomial in z1, . . . , z9,

there is a positive constant M such that

| ∂

∂zk
∂Hij(u)| < M(4.9)

for all u = a+ θ(z− a), 0 < θ < 1, z ∈ Γ , i, j, k = 1, . . . , 9. On the other hand,
by Proposition 3.8, for each �x ∈ ∂D ∩ Ξ1, there are positive constants C and
ρ, ρ < 1, such that

|Xi,n(�x) − ai| ≤ Cρn, i = 1, . . . , 4.(4.10)

From eq. (4.8), eq. (4.9), and eq. (4.10), it follows that there is a constant C1

such that
||∂H(H(n)(z)) − ∂H(a)|| ≤ C1ρ

n.(4.11)
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Now let An = ∂H(H(n)(z)) and A = ∂H(a). From eq. (4.11),

∞∑
n=1

||An − A|| < ∞.

Lemma 4.2 implies the existence of lim
n→∞

λ−n∂H(n)(z). Since Q = Λ(a) in this

case, eq. (4.7) implies that for sufficiently large m, the (1, 1) and the (9, 1)-
elements of lim

n→∞
λ−n ∂H(H(n+m)(z)) · · · ∂H(H(m+1)(z)) are positive. From

Proposition 2.1 (3), X1,1(�x) includes x2
1 , and X2,1(�x) includes x4

1 , which implies
that ∂H(H(k)(z)), k = 1, . . . , m, has positive (1, 1) and (9, 1)-elements for �x ∈
∂D ∩ Ξ1 . Therefore, Λij(z) > 0 for (i, j) = (1, 1) and (i, j) = (9, 1). This
completes the proof. �

Proposition 4.4. Assume z ∈ Γ. Let

H
(n)
i (zeλ−nt) def= H

(n)
i (z1e

λ−nt1 , z2e
λ−nt2 , . . . , z9e

λ−nt9) , i = 1, . . . , 9.

(1) There are entire functions H∗
i : C9 → C, such that H

(n)
i (zeλ−nt) → H∗

i (t),
as n → ∞ uniformly in {t = (t1, . . . , t9) ∈ C9 | |ti| ≤ R, i = 1, . . . , 9} for
all R > 0. In particular, H∗

i (t) ≡ 0, for i = 3, 4, 7, 8.

(2) Let H∗(t) = (H∗
1 (t),H∗

2 (t), 0, 0, H∗
5 (t),H∗

6 (t), 0, 0, H∗
9 (t)). Then H∗(t) sat-

isfies,
H∗(λt) = H(1)(H∗(t)),(4.12)

for any t ∈ C9. Moreover,

∂

∂tj
H∗

i (0) = zjΛij(z).

Proof. Let

|z|∗ def= α1
|z1| + |z5|

2
+α2 max(

|z2| + |z6|
2

, |z9|)+α3
|z3| + |z7|

2
+α4

|z4| + |z8|
2

,

for z = (z1, . . . , z9) ∈ C9. | · |∗ satisfies the conditions for a norm. From Propo-
sition 4.1, (α1, α2, α3, α4, 0, 0, 0, 0, 0) and (0, 0, 0, 0, α1, α2, α3, α4, 0)
are the left eigenvectors of ∂H(1)(a) corresponding to λ. It follows that

|∂H(1)(a) tz|∗ ≤ λ |z|∗ .(4.13)

Now fix a z ∈ Γ and let w ∈ R9 . Put

H(n)(z + w) = a + vn + wn,(4.14)
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vn
def= H(n)(z) − a,

wn
def= H(n)(z + w) − H(n)(z).

From the mean-value theorem combined with eq. (4.13), it follows that there is
a positive constant C1 such that

|H(1)(a + vn + w) − H(1)(a + vn)|∗ ≤ λ(1 + C1|vn|∗)(1 + C1|w|∗)|w|∗(4.15)

for |w|∗ ≤ 1 and n ∈ Z+. By Proposition 3.8, there are positive constants C2

and ρ such that,
|vn|∗ ≤ C2ρ

n.(4.16)

Take a positive number b such that

b ·
∞∏

k=0

(1 + C3ρ
k)(1 + C1λ

−k) ≤ 1,

where C3 = C1C2. Then by eq. (4.15) and induction,

|wk|∗ ≤ λk|w|∗
k−1∏
j=0

(1 + C3ρ
j)(1 + C1λ

−(n−j))(4.17)

≤ λk|w|∗/b,

for k ∈ Z+, 0 ≤ k ≤ n, and w ∈ R9, |w|∗ ≤ bλ−n. Thus the estimates eq. (4.16)
and eq. (4.17) together with eq. (4.14) show that there is a δ > 0 and a C4 > 0
such that

|H(n)
i (z eλ−nt)|∗ ≤ C4,(4.18)

for t ∈ R9, |t|∗ < δ. Since each H
(n)
i is a polynomial with positive coefficients,

we see that eq. (4.18) holds also in Ω def= {t ∈ C9 | |t|∗ < δ}. Therefore, for each
i,

{H(n)
i (z eλ−nt) }, n = 1, 2, . . .

forms a normal family of holomorphic functions in Ω. Let

H
(n)
i (z eλ−nt) =

∑
�k

a
(n)
i (�k)tk1

1 tk2
2 · · · tk9

9 ,(4.19)

�k = (k1, . . . , k9) ∈ Z+
9.

By Theorem 3.5,
a
(n)
i (�0) → ai, n → ∞.(4.20)

Define �e(i) ∈ Z+
9 by e

(i)
j = δij . By Proposition 4.3,

a
(n)
i (�e(j)) → zjΛij(z), n → ∞.(4.21)

29



Substitute eq. (4.19) into eq. (4.4) and let n → ∞. By induction starting with
eq. (4.20) and eq. (4.21), we see that there are a∗

i (�k) ’s such that

a
(n)
i (�k) → a∗

i (�k), n → ∞.

Therefore there are holomorphic functions H∗
i : Ω → C, such that H

(n)
i (z eλ−nt) →

H∗
i (t), as n → ∞ uniformly in {t ∈ C9 | |t|∗ ≤ δ/2} , satisfying eq. (4.12). For

any R > 0, take an m ∈ N such that λ−mR < δ/2. Then

H
(n+m)
i (z eλ−(n+m)t) = H

(m)
i (H(n)(z eλ−n(λ−mt)))

→ H
(m)
i (H∗(λ−mt)),

as n → ∞ uniformly in {t ∈ C9 | |t|∗ ≤ R}. This shows that H∗ can be extended
to an entire function in C9, satisfying eq. (4.12).

Let z eλ−n(it) = (z1 eλ−nit1 , . . . , z9 eλ−nit9), z = (z1, . . . , z9) = (�x, �x, x2) ∈
Γ , and (t1, . . . , t9) ∈ R9 . Since X

(n)
3 is a polynomial with positive coefficients,

|H(n)
3 (z eλ−n(it))| ≤ |H(n)

3 (z)| = |X(n)
3 (�x)| .

Therefore, by Theorem 3.5,

H
(n)
3 (z eλ−n(it)) → 0, n → ∞.

This and the fact that H∗
3 is an entire function leads to

H∗
3 (t) ≡ 0

on C9. In the same way, we have

H∗
i (t) ≡ 0

on C9, for i = 4, 7, 8. This completes the proof. �

Note that H∗ has an �x-dependence, though we do not write explicitly.
Let pn(�x) and p∗n(�x) denote the law of λ−nL(w) under µn(�x) and under

µ1,n(�x), respectively. Let qn(�x), q+
n (�x), and q∗n(�x) be the law of (λ−n L(w1), λ−n L(w2)),

λ−n (L(w1) + L(w2)), and λ−n L(w1), respectively, under νn(�x). Note that the
law of λ−n L(w2) under νn(�x) is also equal to q∗n(�x). We often omit writing the
dependence on �x, when no confusion occurs.

We define
g(n)(t) def=

∫ ∞

0

etξ pn(dξ), t ∈ C,(4.22)

g
(n)
1 (t) def=

∫ ∞

0

etξ p∗n(dξ), t ∈ C,(4.23)
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and
h(n)(t1, t2)

def=
∫
R+×R+

et1ξ1+t2ξ2 qn(dξ1dξ2), (t1, t2) ∈ C2.(4.24)

Note that
h(n)(t, t) =

∫ ∞

0

etξ q+
n (dξ),

h(n)(t, 0) =
∫ ∞

0

etξ q∗n(dξ).

From the relation, L(w) = s1(w) + 2s2(w) + 2s3(w) + 3s4(w), w ∈ W ∗(n),
and eq. (4.1) and eq. (4.2), it follows that

g(n)(t)
= {X1,n(�x) + 2X3,n(�x) + 2X4,n(�x)}−1{X1,n(�xn,t) + 2X3,n(�xn,t) + 2X4,n(�xn,t)},

g
(n)
1 (t) = {X1,n(�x)}−1X1,n(�xn,t),

where
�xn,t

def= (x1e
λ−nt, x2e

2λ−nt, x3e
2λ−nt, x4e

3λ−nt),

and
h(n)(t1, t2) = {X2,n(�x)}−1Fn( (�xn,t1 , �xn,t2 , x2 eλ−n(t1+t2)) ).

Theorem 3.5 and Proposition 4.4 imply that for �x ∈ ∂D ∩ Ξ1 ,

g(n)(t) → 1
xc

H∗
1 ( (t, 2t, 2t, 3t) ),

g
(n)
1 (t) → 1

xc
H∗

1 ( (t, 2t, 2t, 3t) ),

h(n)(t1, t2) →
1
yc

H∗
9 ((t1, 2t1, 2t1, 3t1, t2, 2t2, 2t2, 3t2, t1 + t2)),

as n → ∞ uniformly in {t ∈ C | |t| ≤ R} and {(t1, t2) ∈ C2 | |ti| ≤ R, i = 1, 2 },
respectively, for all R > 0. This leads to

Proposition 4.5. Assume �x = (x1, x2, x3, x4) ∈ ∂D ∩ Ξ1 . There are entire
functions g : C → C and h : C2 → C such that

g
(n)
1 (t) → g(t),

g(n)(t) → g(t),

as n → ∞ uniformly in {t ∈ C | |t| ≤ R}, and

h(n)(t1, t2) → h(t1, t2),
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as n → ∞ uniformly in {(t1, t2) ∈ C2 | |ti| ≤ R, i = 1, 2 }, for all R > 0. g(t)
and h(t1, t2) are the unique solution to;

xcg(λt) = φ1(xcg(t), ych(t, t)),(4.25)

ych(λt1, λt2) = f(xcg(t1), ych(t1, t1), xcg(t2), ych(t2, t2), ych(t1, t2)),(4.26)

where φ1 is defined in eq. (3.1) and

f(y1, y2, y3, y4, y5)
def= Y1(y1, y2, 0, 0, y3, y4, 0, 0, y5)

= y2
1y

2
3 + 2(y2

1y3 + y1y
2
3)y5 + 6(y2

2 + y2
4)y

2
5 + 4(y2 + y4)y3

5 + 2y4
5.

∂g(0)
∂t

=
1
xc

(x1Λ11(z) + 2x2Λ12(z) + 2x3Λ13(z) + 3x4Λ14(z)),(4.27)

∂h(0, 0)
∂t1

=
∂h(0, 0)

∂t2
(4.28)

=
1
yc

(x1Λ91(z) + 2x2Λ92(z) + 2x3Λ93(z) + 3x4Λ94(z) + x2Λ99(z)),

where z = (�x, �x, x2).

Proposition 4.6. Assume �x = (x1, x2, x3, x4) ∈ ∂D∩Ξ1 . There are probabil-
ity measures, p(�x), q+(�x) and q∗(�x) on R, and a probability measure q(�x) on
R2 such that

pn(�x) ⇒ p(�x),

p∗n(�x) ⇒ p(�x),

q+
n (�x) ⇒ q+(�x),

q∗n(�x) ⇒ q∗(�x),

and
qn(�x) ⇒ q(�x),

as n → ∞, where ⇒ denotes weak convergence.

(1) The Laplace transforms of the limit measures are given by,∫ ∞

−∞
etξ p(�x)(dξ) = g(t),

∫ ∞

−∞
etξ q+(�x)(dξ) = h(t, t),∫ ∞

−∞
etξ q∗(�x)(dξ) = h(t, 0),

and ∫
R×R

et1ξ1+t2ξ2 q(�x)(dξ1dξ2) = h(t1, t2).

32



(2) ∫ ∞

−∞
ξ p(�x)(dξ) > 0,

∫ ∞

−∞
ξ q+(�x)(dξ) > 0,∫ ∞

−∞
ξ q∗(�x)(dξ) > 0.

(3) None of p(�x), q+(�x) and q∗(�x) is concentrated on a single point.

The assertion (2) follows from Proposition 4.3, eq. (4.27), and eq. (4.28).
The assertion (2) combined with eq. (4.25) and eq. (4.26) leads to assertion (3).

Proposition 4.7. There are positive constants C1 and C2 such that

|g(it)| < C2e
−C1|t|κ ,

|h(it, it)| < C2e
−C1|t|κ ,

|h(it, 0)| = |h(0, it)| < C2e
−C1|t|κ ,

for t ∈ R, where κ = log 2/ log λ.

Proof. By Proposition 4.5 and eq. (4.3),

g(iλt) =
1
xc

φ1(xcg(it), ych(it, it)),(4.29)

h(iλt, iλt) =
1
yc

φ2(xcg(it), ych(it, it)).(4.30)

Define
G(t) def= −|t|−κ log |g(it)|,

and
H(t) def= −|t|−κ log |h(it, it)|.

Substituting these in eq. (4.29) and eq. (4.30), and using the fact that |g(it)| ≤ 1
and |h(it, it)| ≤ 1, we have, from eq. (3.1) and eq. (3.2),

log |g(iλt)| ≤ 2 log |g(it)| ,

log |h(iλt, iλt)| ≤ 2(log |g(it)| ∨ |h(it, it)|) .

From these it follows that
G(λt) ≥ G(t) ,(4.31)

H(λt) ≥ G(t) ∧ H(t) .(4.32)
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By Proposition 4.6 (3), there is a constant δ > 0 and a constant C, 0 < C < 1
such that

0 < |g(it)| < C,

0 < |h(it, it)| < C,

for any t ∈ R, λ−1δ ≤ |t| < δ. Therefore, eq. (4.31) and eq. (4.32) lead to

G(t) > C1,

H(t) > C1,

for any t ≥ δ with C1 = −δ−κ log C > 0. This implies

|g(it)| < e−C1|t|κ ,

|h(it, it)| < e−C1|t|κ ,

for t ≥ δ. Take C2 > eC1δκ

. Then we have

|g(it)| < C2e
−C1|t|κ ,

|h(it, it)| < C2e
−C1|t|κ ,

for t ∈ R. The estimate for |h(it, 0)| is obtained similarly. This completes the
proof. �

We use the following property in later sections.

Proposition 4.8. p , q+ , and q∗ have C∞ densities. In particular, ρ , the
density of p , satisfies

ρ(ξ) = 0 , ξ ≤ 0 , and ρ(ξ) > 0 , ξ > 0 .

Proof. Proposition 4.7 and the fact that g and h are entire functions imply that
g(it) , h(it, it) , and h(it, 0) with t ∈ R are rapidly decreading functions. From
this, the existence of the C∞ densities for p , q+ , and q∗ follows. Let ρ+ be the
density of q+ . Then eq. (4.25) and eq. (3.1) imply that

λ−1ρ(λ−1ξ)(4.33)
= xcρ ∗ ρ(ξ) + 2xc

2ρ ∗ ρ ∗ ρ(ξ) + 2xc
3ρ ∗ ρ ∗ ρ ∗ ρ(ξ)

+ 4xc
2ycρ ∗ ρ ∗ ρ ∗ ρ+(ξ) + 6xcyc

2ρ ∗ ρ ∗ ρ+ ∗ ρ+(ξ) .

Let A be the support of ρ . It is clear that A ∈ [0,∞) . From eq. (4.33) it
follows that if x, y, z ∈ A , then λ−1(x + y) , λ−1(x + y + z) ∈ A . Note that
2 < λ < 3 . By Proposition 4.6 (2), there is an x0 ∈ A such that x0 > 0 .
Then (2λ−1)nx0 ∈ A , n ≥ 1 . Since A is a closed set, this leads to 0 ∈ A .
Therefore, 0 , λ−1x0 , 2λ−1x0 , 3λ−1x0 ∈ A , and by induction, it follows that
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mλ−nx0 ∈ A , m = 0, 1, · · · , 3n . This implies A = [0,∞) . This completes the
proof. �

Note that µ∗
n in Section 1 is equal to µn(�xc) with

�xc = (exp(−βc), exp(−2βc), exp(−2βc), exp(−3βc)) .

The definition of βc implies �xc ∈ Γ . Therefore Theorem 1.2 in Section 1 follows
from Proposition 4.6 and Proposition 4.8.

5 Continuum limit of self-avoiding paths

Let Fn, n = 0, 1, 2, . . . be the graphs defined in Section 1. Let F̃n = 2−nFn, n =
0, 1, 2, . . . . Each F̃n is a finite graph obtained by giving a substructure to a
unit tetrahedron Oa0b0c0. Let us define the finite three-dimensional Sierpinski
Gasket by

F̃ =
∞⋃

n=0

F̃n.

We define G̃n to be the set of vertices in F̃n, and Tn to be the set of closed
tetrahedrons in R3 whose vertices belong to G̃n and whose edges are of length
2−n.

Let
C = {w ∈ C([0,∞) → F̃ ) | w(0) = O, lim

t→∞
w(t) = a0}.

C is a complete separable metric space with the metric

d(u, v) = sup
t∈[0,∞)

|u(t) − v(t)|,

u, v ∈ C .
We define a mapping γ :

⋃
n

W ∗(n) → C as follows. For u ∈ W ∗(n),

(1) γu(j) def= 2−nu(j), for j ∈ Z+

(2) γu(t) def= (j + 1 − t) γu(j) + (t − j) γu(j + 1), for j ≤ t < j + 1, j ∈ Z+.

Note that γ is an injection. We denote

W̃ ∗(n) def= γW ∗(n).

w ∈ W̃ ∗(n) is self-avoiding in the sense that w(t1) �= w(t2) if 0 ≤ t1 < t2 ≤
L(γ−1w).

Let µ̃n(�x) be the image measures of µn(�x) induced by γ. µ̃n(�x) is a proba-
bility measure on C supported on W̃ ∗(n). Throughout this section we consider
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the case �x ∈ ∂D∩Ξ1. Our objective in this section is to study the limit of µ̃n(�x)
as n tends to infinity.

Let us begin with some definitions we use in this section. First we define
“hitting times”, T k

i : C → R+, k, i ∈ Z+. Let T k
0 (w) = 0, and by induction,

for i ≥ 1,

T k
i (w) = inf{t > T k

i−1(w) | w(t) ∈ G̃k \ {w(T k
i−1(w))}},

if the right hand side is finite, otherwise, T k
i (w) = ∞. T k

i is the time when w hits
the elements of G̃k for the i-th time on condition that if w hits the same element
of G̃k more than twice on end, we consider it “once”. Writing w(∞) = a0, and
noting that w(t) → a0 as t → ∞, we obtain a finite sequence {T k

i }i=1,...,M such
that w(T k

M (w)) = a0, w(T k
i (w)) �= a0, i = 1, . . . , M − 1.

Next we define the “exit times”, {T ∗k
i (w)}i=0,...,N(w). and the “k-skeletons”,

the sequence of tetrahedrons a path passes through, σk(w) = (∆1, . . . , ∆N(w)).
Let {T k

i (w)}i=0,...,M be the finite sequence obtained above. Let T ∗k
0 (w) =

T k
0 (w) = 0. ∆1 is defined to be the element of Tk that contains O = (0, 0).

For i ≥ 1 we proceed by induction. Define

exit(i) def= min{j ∈ Z+ | j < M, T k
j (w) > T ∗k

i−1(w), w(T k
j+1) �∈ ∆i}.

As long as the right-hand side exists, we define T ∗k
i (w) = T k

exit(i) and ∆i+1

to be the element of Tk that contains both w(T ∗k
i (w)) and w(T k

exit(i)+1(w)).
N = N(w) denotes the number of the elements of σk(w) defined in this way.
Let T ∗k

N (w) = T k
M (w). We write Sk

i (w) = T ∗k
i (w) − T ∗k

i−1(w) and call it the
crossing time of ∆i. In the following we denote an ordered set of tetrahedrons
like (∆1, . . . , ∆N ) and an unordered set like {∆1, . . . , ∆N}. Let w ∈ C , k ∈
Z+ , and σk(w) = (∆1, . . . , ∆N ). The following properties are straightforward
consequences of the definition.

1. O ∈ ∆1, a0 ∈ ∆N .
2. ∆i ∩ ∆i+1is equal to neither ∅ nor ∆i.
If w ∈ W̃ ∗(n), n, k ∈ Z+, n ≥ k, σk(w) further satisfies,
3. Each element of Tk appears at most twice in (∆1, . . . , ∆N ).
4.{∆i, ∆i+1} �= {∆j , ∆j+1}, i �= j as unordered sets.

Let us denote Tk
def= {∆ = (∆1, . . . , ∆N ) | ∆i ∈ Tk, i = 1, . . . , N, N =

1, 2, . . . , ∆ satisfies 1. through 4.}, and T 1,2
k

def= {∆ = (∆1, . . . , ∆N ) | ∆i ∈
Tk, i = 1, . . . , N, N = 1, 2, . . . , ∆ satisfies 1. and 2.},

For n ∈ Z+, we define a “decimation” map Qn : C → C by

(Qnw)(i) = w(T n
i (w)),

for i = 0, 1, 2, . . . , M , with w(T n
M (w)) = a0,

(Qnw)(t) = (i + 1 − t) (Qnw)(i) + (t − i) (Qnw)(i + 1),
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for i ≤ t < i + 1, i = 0, 1, 2, . . . , M − 1, and

(Qnw)(t) = a0

for t ≥ M . Note that if k ≤ n, we have Qk ◦ Qn = Qk.
Let m ≤ n and Qmµ̃n(�x) be the image measure of µ̃n(�x) induced by Qm.

Proposition 5.1. For w ∈ W̃ ∗(n) and m ≤ n, Qmw ∈ W̃ ∗(m).

Qmµ̃n(�x) = µ̃m( �Xn−m(�x)).

In particular, for �a
def= (xc, yc, 0, 0),

Qmµ̃n(�a) = µ̃m(�a).

The statement on Qmµ̃n(�x) is obtained directly from the recursion relations,
eq. (2.2) in Proposition 2.1.

We introduce a time-scale transformation Un(α) : C → C, α ∈ (0,∞), n ∈
N . For w ∈ C, define

(Un(α)w)(t) def= w(αnt).

Let us denote by Pn(�x) the image measure of µ̃n(�x) induced by Un(λ). We omit
the �x dependence of Pn when no confusion occurs.

We define

V (n) def= { w ∈ W̃ ∗(n) | s3(γ−1w) = s4(γ−1w) = 0 }.

Note that for w ∈ V (n),
T ∗k

i (w) = T k
i (w),

for k ≤ n, 0 ≤ i ≤ N(w).
In the following we write, for example, Pn[ Qmw = v ] instead of Pn[ {w ∈

C | Qmw = v} ].
We obtain the following proposition in a similar way to the case of the two-

dimensional Sierpinski Gasket.

Proposition 5.2. Assume m ≤ n, v ∈ V (m), and σm(v) = (∆1, . . . , ∆N ).
Under the conditional probability Pn[ · | Qmw = v], we have the following.

(1) The set of Sm
i ’s with i ∈ {i1, i2, . . . , iK} ⊂ {1, . . . , N} are independent

random variables, if ∆ij �= ∆ik
, for any j �= k.

(2) For 1 ≤ i ≤ N , if ∆i appears only once in σm(v), the law of λmSm
i is

equal to p∗n−m, thus converges weakly to p∗ as n → ∞.

(3) If ∆i = ∆j , 1 ≤ i < j ≤ N, then the law of (λmSm
i , λmSm

j ) is equal to
qn−m, thus converges weakly to q as n → ∞. In particular, the law of
λmSm

i is equal to q∗n−m, converging weakly to q∗ as n → ∞.
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By Proposition 5.1 combined with Theorem 3.5, we have

Proposition 5.3. For any k ∈ Z+,

lim
n→∞

Pn[ Qkw = v ] =
{

xN1−1
c yN2

c if v ∈ V (k),
0 otherwise,

where N1 = s1(γ−1v) and N2 = s2(γ−1v).

Proposition 5.4. The family of measures Pn, n = 1, 2, . . . , is tight.

Proof. Since we already have

Pn[ w(0) = O ] = 1,

it suffices to show that for any ε, η > 0, there exist a positive integer n0 and a
positive number δ such that

Pn[ sup
|s−t|<δ

|w(s) − w(t)| > ε ] ≤ η, n ≥ n0.

For an arbitrarily given ε, choose k ∈ Z+ satisfying

2 · 2−k < ε.

We have,

Pn[ sup
|s−t|<δ

|w(s) − w(t)| > ε ]

≤ Pn[ Sk
i (w) < δ for some i = 1, . . . , N(w) ]

≤
∑

v∈V (k)

L(γ−1v)∑
i=1

Pn[ Sk
i (w) < δ | Qkw = v ] · Pn[ Qkw = v ]

+ Pn[ Qkw ∈ W̃ ∗(k) \ V (k) ]
≤ 2 · 4k(p∗n−k[ s : s < λkδ ] + q∗n−k[ s : s < λkδ ])

+ Pn[ Qkw ∈ W̃ ∗(k) \ V (k) ].

The last inequality is obtained from Proposition 5.2 and the fact that L(γ−1v) ≤
2 · 4k, a.s.. By Proposition 5.3, there is an n1 ∈ Z+ such that

Pn[ Qkw ∈ W̃ ∗(k) \ V (k) ] ≤ η

2
, for n > n1.

Take a δ > 0 such that

p[ s : s < λkδ ] + q∗[ s : s < λkδ ] ≤ 1
2
· 4−k−1η.
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Then by Proposition 4.6 and Proposition 4.8, there is an n0 ≥ n1 such that

p∗n−k[ s : s < λkδ ] + q∗n−k[ s : s < λkδ ] < 4−k−1η,

for n ≥ n0. This completes the proof. �

Now we will show the convergence of the finite dimensional distributions.
For w ∈ C, 0 ≤ t1 ≤ . . . ≤ tm, m = 1, 2, . . . , let us define

hm(w(t1), . . . , w(tm)) = eix1w(t1)+...+ixmw(tm), (x1, . . . , xm) ∈ Rm.

For a probability measure Q on C, define Fm(Q)(t1, . . . , tm) : Rm → C by,

Fm(Q)(t1, . . . , tm) def= EQ[hm(w(t1), . . . , w(tm))].

Fix an m ∈ Z+. For any k ∈ Z+ and n ≥ k,

Fm(Pn)(t1, . . . , tm)

=
∑

v∈V (k)

EPn [hm | Qkw = v] Pn[Qkw = v]

+ EPn [hm | Qkw ∈ W̃ ∗(k) \ V (k)] Pn[Qkw ∈ W̃ ∗(k) \ V (k)].

F (Pn)
def=

∑
v∈V (k)

EPn [hm | Qkw = v]Pn[Qkw = v]

=
∑

v∈V (k)

∑
{ri}

EPn [hm | Qkw = v, T ∗k
ri

≤ ti < T ∗k
ri+1, i = 1, . . . , m]

× Pn[T ∗k
ri

≤ ti < T ∗k
ri+1, i = 1, . . . , m | Qkw = v ] Pn[Qkw = v],

where
∑
{ri}

is taken over {1, 2, . . . , N(v)}m with r1 ≤ r2 ≤ . . . ≤ rm.

For simplicity write

EPn def= EPn [hm | Qkw = v, T ∗k
ri

≤ ti < T ∗k
ri+1, i = 1, . . . , m],

P ∗
n

def= Pn[T ∗k
ri

≤ ti < T ∗k
ri+1, i = 1, . . . , m | Qkw = v],

P̃n
def= Pn[Qkw = v],

and
Rn

def= Pn[Qkw ∈ W̃ ∗(k) \ V (k)].

39



Then for n, n′ ≥ k,

|F (Pn) − F (Pn′)|
≤

∑
v∈V (k)

∑
{ri}

|EPn − EPn′ | P ∗
n P̃n +

∑
v∈V (k)

∑
{ri}

|EPn′ ||P ∗
n − P ∗

n′ | P̃n

+
∑

v∈V (k)

∑
{ri}

|EPn′ | P ∗
n′ |P̃n − P̃n′ |.

Put
ui = w(T ∗k

i ), i = 1, . . . , N(v).

Under the condition that Qkw = v, v ∈ V(k), T ∗k
ri

≤ ti < T ∗k
ri+1, i = 1, . . . , m,

there are positive constants C1 and C2, independent of k, v and {ri} such that

|hm(w(t1), . . . , w(tm)) − hm(ur1 , . . . , urm)| ≤ C12−C2k.

Thus the first term is bounded by C12−C2k+1. For an arbitrarily given ε > 0,
choose a k such that

C12−C2k+1 <
ε

4
.

Note that for a fixed k, the summation over v and {ri} is finite. By Proposi-
tion 5.2 and Proposition 5.3, for sufficiently large n and n′, the second and the
third sum are less than ε/4, respectively, and

Rn + Rn′ <
ε

4
.

Thus we see that {Fm(Pn)(t1, . . . , tm)}n=1,2,... is a Cauchy sequence in C(Rm →
C), and therefore converges uniformly as n → ∞ . We have shown that the
distribution of (w(t1), . . . , w(tm)) converges for any 0 ≤ t1 ≤ . . . ≤ tm, m ∈ Z+.
This result combined with Proposition 5.4 leads to the following theorem.

Theorem 5.5. Pn converges to a probability measure P on C weakly as n →
∞.

Now we will proceed to study the properties of P . For ∆ ∈ Tk, let us denote
its neighbouring elements of Tk, by ∆(1), . . . , ∆(3), if ∆ contains any element of

G0, or by ∆(1), . . . , ∆(4), otherwise. Let us denote

(⋃
i

∆(i) ∩ Gk

)
\ (∆ ∩ Gk)

by ∂N(∆), and

(⋃
i

∆(i) ∪ ∆

)
\ ∂N(∆) by N(∆).

Proposition 5.6. Assume ∆ = (∆1, . . . , ∆N ) ∈ Tk, k ∈ Z+. Let A = {w ∈
C | σk(w) = ∆ }. A is an open subset of C.
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Proof. Take any w ∈ A. From the definition of the skeleton, for T ∗k
i−1 ≤ t <

T ∗k
i , i = 1, . . . , N ,

w(t) ∩ Gk ⊂ ∆i ∩ Gk,

that is, w(t) ∈ N(∆i). Let

ri = inf{d(w(t), ∂N(∆i)) | T ∗k
i−1 ≤ t < T ∗k

i },

and
ti = inf{t > T ∗k

i−1 | w(t) ∈ ∆i, d(∆i−1 ∩ ∆i, w(t)) = 2−k−1}.
Noting that ri > 0, we can find an ε > 0 satisfying

ε < min
i=1,...,N

ri ∧ 2−k−2.

Then it follows that for any w′, d(w,w′) < ε,

w′(ti) ∈ ∆i \ Gk,

{w′(t) | ti < t ≤ T ∗k
i } ∩ Gk ⊂ ∆i ∩ Gk ,

{w′(t) | T ∗k
i−1 ≤ t < ti} ∩ Gk = ∆i−1 ∩ ∆i ,

for i = 1, . . . , N , and ∆i �= ∆i−2 for i = 3, . . . , N . This means w′ ∈ A. This
completes the proof. �

For ∆ ∈ T 1,2
k , define a subset of C as u(∆) def= {w ∈ C | there exists a sequence 0 <

s1 < s2 < . . . < sN < ∞ such that w(si) ∈ ∆i \ Gk and w((si, si+1)) ∩ Gk ⊂
∆i for all i = 1, 2, . . . , N}, where w((a, b)) def= {w(t) | a < t < b}.

By a similar argument to the proof of Proposition 5.6, we have,

Proposition 5.7. u(∆) is an open set.

Proposition 5.8. If ∆ ∈ T 1,2
k , then

{w ∈ C | σk(w) = ∆} ⊂ u(∆) .

Proof. Let ti, i = 1, . . . , N be as defined in the proof of Proposition 5.6. Since
T ∗k

i−1 < ti < T ∗k
i , {w(t) | T ∗k

i−1 < t < ti} ∩ Gk ⊂ ∆i−1 ∩ ∆i , and {w(t) | ti < t <
T ∗k

i } ∩ Gk ⊂ ∆i . Take si = ti , i = 1, 2, . . . , N . This completes the proof. �

From this proposition we have,

Proposition 5.9. If ∆ ∈ T 1,2
k does not satisfy the condition 3. or 4., then

P [ σk(w) = ∆ ] = 0.
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Proof.

P [ σk(w) = ∆ ] ≤ P [u(∆)]
≤ lim inf

n→∞
Pn[u(∆)]

= lim inf
n→∞

Pn[σk(w) = ∆]

= 0.

The first inequality comes from Proposition 5.8 and the second comes from the
weak convergence of Pn to P . The probability vanishes because Pn is supported
on a set of self-avoiding paths. This completes the proof. �

For each ∆ = (∆1, . . . , ∆N ) ∈ Tk, there is a unique element v∆ of V (k) such
that σk(v∆) = ∆ . v∆ is determined by v∆(i) ∈ ∆i ∩∆i+1 , i = 1, 2, . . . , N −1 ,
and v∆(N) = a0 . On the other hand, for each v ∈ V (k) there is a unique element
∆ of Tk, such that σk(v∆) = ∆ . This defines a one-to-one onto mapping from
Tk to V k .

Proposition 5.10. For ∆ = (∆1, . . . , ∆N ) ∈ Tk,

P [ σk(w) = ∆ ] ≤ xN−2N2−1
c yN2

c ,

where N2 denotes the number of distinct tetrahedrons that appears twice in ∆.

Proof. By Theorem 5.5, Proposition 5.6, and Proposition 5.3, we have

P [ σk(w) = ∆ ]
≤ lim inf

n→∞
Pn[ σk(w) = ∆ ]

= lim inf
n→∞

Pn[ Qkw = v∆ ] + lim inf
n→∞

Pn[ σk(w) = ∆ , Qkw �= v∆ ]

= xN1−1
c yN2

c

= xN−2N2−1
c yN2

c .

This completes the proof. �

Theorem 5.11. For ∆ ∈ T 1,2
k ,

P [ σk(w) = ∆ ] =
{

xN−2N2−1
c yN2

c if ∆ ∈ Tk,
0 otherwise.

Proof. Proposition 5.9 implies that P is supported on {w ∈ C | σk(w) ∈ Tk }.
Assume that for some ∆′ ∈ Tk,

P [ σk(w) = ∆′ ] < xN−2N2−1
c yN2

c .
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This assumption together with Proposition 5.10 leads to

1 =
∑

∆∈Tk

P [ σk(w) = ∆]

<
∑

∆∈Tk

xN−2N2−1
c yN2

c

= x−1
c xk(xc, yc)

= 1 .

Here, xk is defined in Section 3 and we used∑
∆∈Tk

xN−2N2−1 yN2 = xk(x, y) ,

which follows from the correspondence between Tk and V (k) . This is a contra-
diction. This completes the proof. �

Remark. Though P itself has an �x-dependence, the probability that a path’s
skeleton takes a certain form is independent of �x. The dependence appears only
in the crossing times of tetrahedrons. ( See Proposition 4.5.)

Proposition 5.12. Let σk(w) = (∆(k)
1 (w), . . . ,∆(k)

Nk
(w)), and denote by u

(k)
i

and v
(k)
i the two vertices of ∆(k)

i (w) that are not contained in {w(T ∗k
i (w)), w(T ∗k

i−1(w))} ,
i = 1, . . . , Nk. Then

P [ w(t) ∈ ∆(k)
i (w) \ {u(k)

i , v
(k)
i } for all t, T ∗k

i−1(w) < t < T ∗k
i (w) ,

i = 1, . . . , Nk , k ∈ Z+ ] = 1 .

Proof. Assume for some i and k there exist ∆′ ∈ Tk, ∆′ �= ∆(k)
i , and t′,

T ∗k
i−1(w) < t′ < T ∗k

i (w), such that w(t′) ∈ ∆′ \ Gk. The definition of the exit
times implies that there are t1, . . . , t4, t1 < t2 < t′ < t3 < t4 such that {w(t2)} =
{w(t3)} = ∆′ ∩ ∆(k)

i , and w(t1), w(t4) ∈ ∆(k)
i \ Gk. Let r = d(w(t′),∆′ ∩ ∆(k)

i )
and rj = d(w(tj),∆′ ∩ ∆(k)

i ), j = 1, 4. Choose an m ∈ Z+ such that 2 · 2−m <

min(r, r1, r4). Let ∆(m) and ∆̃(m) be the elements of Tm satisfying

∆(m) ⊂ ∆(k)
i , ∆̃(m) ⊂ ∆′ , ∆′ ∩ ∆(k)

i = ∆(m) ∩ ∆̃(m) .

Then it follows that σm(w) contains the subsequence (∆(m), ∆̃(m)) or (∆̃(m), ∆(m))
at least twice. Thus for a fixed ∆ = (∆1, . . . , ∆N ) ∈ Tk,

P [ σk(w) = ∆ and w(t′) ∈ F̃ \ ∆i, for some i and t′, T ∗k
i−1(w) < t′ < T ∗k

i (w) ]
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≤
N(∆)∑
i=1

P [ σk(w) = ∆ and w(t′) ∈ F̃ \ ∆i, for some t′, T ∗k
i−1(w) < t′ < T ∗k

i (w) ]

≤
N(∆)∑
i=1

∞∑
m=k+1

P [ σk(w) = ∆, σm(w) contains some successive pair

{∆(m), ∆̃(m)} twice. ]
= 0 .

To obtain the last equality, we used Proposition 5.9. Summing up over all
elements of Tk and all k ∈ Z+ we obtain,

P [ w(t) ∈ ∆(k)
i (w) for all T ∗k

i−1(w) < t < T ∗k
i (w) , i = 1, . . . , Nk , k ∈ Z+ ] = 1 .(5.1)

Again, for a fixed ∆ = (∆1, . . . , ∆N ) ∈ Tk, and a fixed i, 1 ≤ i ≤ N, we denote
the two vertices of ∆i that are not contained in ∆i ∩ ∆i+1 or ∆i−1 ∩ ∆i, by
u and v, and the element of Tm that is contained in ∆i and containing u, by
∆(m)

u , for m = k, k + 1, . . .. If w(t) = u for some t, T ∗k
i−1(w) < t < T ∗k

i (w), then
w must go inside ∆(m)

u , which, from what we just proved above, implies that
there is a subsequence of σm(w), {∆(m)

r , ∆(m)
r+1, . . . , ∆

(m)
r+r1

}, r, r1 ∈ Z+, r1 > 0,
such that ∆(m)

j ⊂ ∆i, r ≤ j ≤ r + r1, w(T ∗k
i−1(w)) ∈ ∆(m)

r , w(T ∗k
i (w)) ∈ ∆(m)

r+r1
,

and ∆(m)
s = ∆(m)

u for some s satisfying r ≤ s ≤ r + r1 . In terms of probability,

P [ there exists t, T ∗k
i−1(w) < t < T ∗k

i (w) , such that w(t) = u | σk(w) = ∆ ]
≤ P [ σm(w) has a subsequence satisfying above conditions | σk(w) = ∆ ]
≤ bm−k,

where
b

def= max{x−1
c (φ1(xc, yc) − x2

c), y
−1
c (φ2(xc, yc) − x4

c)} .

Since b < 1 and m can be chosen arbitrarily large, the first probability vanishes.
The same holds for v instead of u. Summing up over i, ∆ ∈ Tk, and k, and
combining with eq. (5.1) we have the statement. This completes the proof. �

We go on to prove that the stocastic process defined by P is almost surely
self-avoiding, that is, w(t1) �= w(t2), for 0 ≤ t1 < t2 ≤ Ta0(w) , where

Ta0(w) = inf{t > 0 | w(t) = a0} .

We classify possible self-intersections as follows.

(1) There are t1 ≥ 0 and t0 > 0 such that

w(t) = w(t1), for t1 ≤ t ≤ t1 + t0 < Ta0(w).
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(2) There are t1, t2, and t3, t1 < t2 < t3 such that

w(t1) = w(t3),

w(t2) �= w(t1).

Type (2) can be further classified into two cases:
(2-1) w(t1) ∈

⋃
k

Gk,

(2-2) w(t1) ∈ F \
⋃
k

Gk.

We start with dealing with type (1) case.

Proposition 5.13.

P [ there exist t1 ≥ 0 and t0 > 0 such that w(t) = w(t1) �= a0, t1 ≤ t ≤ t1 + t0]
= 0.

Proof. Let Ak,t0 be the set of w ∈ C such that there exist t1 ≥ 0, and two
adjoining elements of Tk, ∆ and ∆′, satisfying w(t) ∈ ((∆∪∆′)\Gk)∪ (∆∩∆′)
for t1 ≤ t ≤ t1 + t0, or such that there exist t1 ≥ 0 satisfying w(t) ∈ (∆0 \Gk)∪
{O} for t1 ≤ t ≤ t1 + t0 , where ∆0 is the element of Tk containing O . It is
straightforward to see that Ak,t0 is an open subset of C, and we have

P [Ak,t0 ] ≤ lim inf
n→∞

Pn[Ak,t0 ].

Pn[Ak,t0 ]
≤ Pn[ there exists i, 2 ≤ i ≤ N(w), such that Sk

i−1(w) + Sk
i (w) > t0]

=
∑

∆∈Tk

Pn[σk = ∆] ·
N(∆)∑
i=1

Pn[Sk
i−1(w) + Sk

i (w) > t0 | σk = ∆]

≤ 4k+1(p∗n−k[ t : t >
λkt0

2
] + q∗n−k[ t : t >

λkt0
2

]).

In the last inequality we used

Pn[ Sk
i−1(w) + Sk

i (w) > t0 | σk = ∆]

≤ Pn[ Sk
i−1(w) >

t0
2

or Sk
i (w) >

t0
2
| σk = ∆]

≤ 2(p∗n−k[ t : t >
λkt0

2
] + q∗n−k[ t : t >

λkt0
2

]).

By Chebyshev’s inequality and Proposition 4.5, for any a > 0 and s > 0

lim
n→∞

p∗n[ t : t > a ]

≤ e−sa lim
n→∞

∫ ∞

0

estp∗n(dt)

= e−sag(s) < ∞.
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A similar inequality holds for q∗n[ t : t > a ]. Therefore

P [Ak,t0 ] ≤ lim inf
n→∞

Pn[Ak,t0 ] ≤ 4k+1Ce−s
λkt0

2 ,

where s and C are positive constants. Thus by Proposition 5.12, for any k ∈ Z+

and t0 > 0,

P (t0)
def= P [ there exist t1 ≥ 0 such that w(t) = w(t1) �= a0, t1 ≤ t ≤ t1 + t0]
≤ P [Ak,t0 ].

Letting k → ∞, we see that P (t0) is equal to zero. Therefore,

P [ there exist t1 ≥ 0 and t0 > 0 such that w(t) = w(t1) �= a0, t1 ≤ t ≤ t1 + t0]

≤
∞∑

m=1

P (
1
m

)

= 0

This completes the proof. �

Next we will rule out the possibility that (2-1) occurs. With Proposition 5.12
taken into consideration, it is sufficient to show that {w(t)} �= ∆i ∩ ∆i+1 for
T ∗k

i−1 < t < T ∗k
i almost surely, where ∆i is the i-th component of σk(w). Note

that {w(T ∗k
i )} = ∆i ∩ ∆i+1, and assume there is a t1, T

∗k
i−1 < t1 < T ∗k

i , such
that {w(t1)} = ∆i ∩ ∆i+1. Proposition 5.13 implies that w cannot stay at
∆i ∩ ∆i+1 for a finite interval of time. It follows that there must be an integer
m > k and ∆ ∈ Tm, ∆i ∩ ∆i+1 ⊂ ∆ ⊂ ∆i, that appears in σm(w) three times.
By Theorem 5.11, this occurs with probability zero. We can show in a similar
fashion that {w(t)} �= ∆i−1 ∩∆i , for T ∗k

i−1 < t < T ∗k
i , a.s.. Therefore, we have,

Proposition 5.14.

P [ w(t) ∈ ∆(k)
i (w) \ Gk for all T ∗k

i−1(w) < t < T ∗k
i (w) , i = 1, . . . , Nk,

k ∈ Z+ ] = 1,

where σk(w) = (∆(k)
1 (w), . . . ,∆(k)

Nk
(w)). In particular,

P [ T ∗k
i (w) = T k

i (w), for all i = 1, . . . , Nk , k ∈ Z+ ] = 1.

What is left is to show that the probability for the type (2-2) case is zero.
For x ∈ F̃ \

⋃
k

Gk, there is a sequence of tetrahedrons ∆(0)
x , ∆(1)

x , . . . , ∆(k)
x , . . .

such that

∆(k)
x ∈ Tk , x ∈ ∆(k)

x \ Gk ⊂ ∆(k−1)
x \ Gk−1 , k ∈ Z+ .
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In order that w hits x twice, there must be an integer K such that σk(w)
contains ∆(k)

x twice for any k ≥ K, and σK−1(w) contains ∆(K−1)
x only once.

For w ∈ C let K(w) be the minimum integer, if exists, such that there exists a
sequence {∆(k)}, k = K(w), K(w) + 1, . . . satisfying

(1) ∆(k) ∈ Tk , ∆(k+1) ⊂ ∆(k) ,

(2) σk(w) contains ∆(k) twice.

Put qk = P [ K(w) = k ] . For any ∆∗ ∈ Tm , m = 1, 2, . . . , let q be the
probability that there exists a sequence {∆(k)} , k = m, m + 1, . . . , satisfying
(1) and (2) above with ∆(m) = ∆∗ , under the condition that ∆∗ is contained in
σm(w) twice. Note that by Theorem 5.11, q is independent of m and the choice
of ∆∗ .

Classifying according to the four possibilities of ∆(m+1) and using the inclusion-
exclusion principle, we have

q = y−1
c {4x3

cycq + 22y4
c(4q − 6q2 + 4q3 − q4)}.

The only solution to this equation found in 0 ≤ q ≤ 1 is q = 0. By Theorem 5.11,
q and qk’s are related as follows;

qk = 1 − x−1
c xk−1(xc(1 − q1), yc) ,

q1 = 4x2
cycq + 6xcy

2
c (2q − q2) .

This leads to qk = 0, for all k = 1, 2, . . .. We thus have

P [ type (2-2) occurs ] ≤
∞∑

k=1

qk = 0.

Theorem 5.15. The stochastic process defined by P is almost surely self-
avoiding, that is,

P [ w(t1) �= w(t2) , 0 ≤ t1 < t2 ≤ Ta0(w) ] = 1.

Let w ∈ C . The image of w , G(w) def= w([0,∞)) , is a subset in three-
dimensional Euclidean space. We next study the Hausdorff dimension of G(w) .

In the case of the self-avoiding paths on (two-dimensional) Sierpinski gasket,
Theorem 1.1 of [6] was sufficient for the probability one determination of the
Hausdorff dimension of curve G(w) (Section 1.4 of [2]). Unfortunately it is not
sufficient for the present case. The problem is as follows.

From Proposition 5.12, it follows that

G(w) =
∞⋂

k=0

⋃
∆∈σk(w)

∆ , P − a.s. .
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Each skeleton σk(w) is a sequence of tetrahedrons ∆ of side length 2−k . Note
that from Theorem 5.11, there are two types of tetrahedrons in σk(w) for each k,
namely those that appear just once in σk(w) and those that appear twice, both
type appearing with positive probability. The family of tetrahedrons

⋃
k

σk(w)

resembles the “random constructions” of Mauldin and Williams, but their theory
can be applicable to the case when only one type of tetrahedrons appear.

Here we will state a weaker result, a lower bound of the Hausdorff dimension
of G(w) . This can be derived by considering a following subgraph of G(w) :

G′(w) def=
∞⋂

k=0

⋃
∆∈σ′

k
(w)

∆ ,

where
σ′

k(w) = {∆ ∈ σk(w) | ∆ appears just once in σk(w)} .

The Hausdorff dimension of G′(w) can be derived from Theorem 1.1 of [6], in
a similar way as in [2], and the value can be used as the lower bound to the
Hausdorff dimension of G(w) . We will state our result without proof.

Theorem 5.16.

P [Hausdorff dimension of w([0,∞)) ≥ log(8x3
c + 6x2

c + 2xc)/ log 2 ] = 1 .

Remark.

(1) 8x3
c + 6x2

c + 2xc = 2.599 · · · > 2 .

(2) We conjucture that with P -probability 1 the Hausdorff dimension of w([0,∞))
is log λ/ log 2 , where λ is as in Proposition 4.1. This could be derived from
an extension of the theory of [6].

6 Mean square deviations of self-avoiding paths

In this section, we return to the self-avoiding paths on the three-dimensional
pre-Sierpinski gasket, but instead of considering a set of paths with fixed end
points, we now consider a set of paths with a fixed length. The arguments are
similar to those in [4].

Let W (0) = {w ∈ W0 | w(0) = O} , and for each k ∈ Z+ , let N(k) be the
number of elements in {w ∈ W (0) | L(w) = k} . The first step is to bound N(k)
from above and below.
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Proposition 6.1. Let b be a positive constant, and for n ∈ Z+ and ξ ∈ R ,
let hn = b λ−n

√
n , and gn(ξ) = (

√
2πhn)−1 exp(−ξ2/(2h2

n)) . If b is sufficiently
large, then

(p∗n(�xc) ∗ gn)(ξ) def=
∫
R

gn(ξ − η) p∗n(�xc)(dη) → ρ(�xc)(ξ)

uniformly in ξ ∈ R as n → ∞ . Here, λ is as in Proposition 4.1, p∗n as in Proposi-
tion 4.6, ρ as in Proposition 4.8, �xc = (exp(−βc), exp(−2βc), exp(−2βc), exp(−3βc)) ,
and βc is as in Corollary 3.6.

Proof. Let

φn(t) =
∫
R

exp(i ξ t) (p∗n(�xc) ∗ gn)(ξ) dξ , t ∈ R .

Then

φn(t) = Z1,n(βc)−1Z1,n(βc − iλ−nt) exp(−h2
nt2/2)

= g
(n)
1 (it) exp(−h2

nt2/2) ,

where Z1,n is defined in eq. (3.8), and g
(n)
1 is as in eq. (4.23) with �x = �xc. Note

that �xc ∈ ∂D∩Ξ1 . Also note that from eq. (4.24), h(n)(it, it) = Z2,n(βc)−1Z2,n(βc−
iλ−nt) .

Let
A = {t ∈ C | �t ≥ 0 , λ−1 ≤ |t| ≤ λ2} .

Proposition 4.8 implies that sup
t∈A

|g(it)| < 1 and sup
t∈A

|h(it, it)| < 1 . Therefore

from Proposition 4.5 and Corollary 3.6 it follows that there exist a positive
number ε and a positive integer n1 such that for n ≥ n1 and t ∈ A ,

|Z1,n(βc − iλ−nt)| = |Z1,n(βc) g
(n)
1 (it)| < xc − ε ,

and
|Z2,n(βc − iλ−nt)| = |Z2,n(βc) h(n)(it, it)| < yc − ε .

By Proposition 2.2, (xc − ε, yc− ε, 0, 0) ∈ Do , and since Do is an open set in Ξ0 ,
there exists a positive number δ such that (xc − ε, yc − ε, δ, δ) ∈ Do . Note that
|Zj,n(βc − iλ−nt)| ≤ |Zj,n(βc)| , j = 1, 2, 3, 4, t ∈ A. From Corollary 3.6, there
exists an integer n0 ≥ n1 such that |Zj,n(βc − iλ−nt)| ≤ δ , j = 3, 4, n ≥ n0 .
Therefore,

|Zj,n+m(βc − iλ−nt)| ≤ Xj,m(xc − ε, yc − ε, δ, δ) ,

j = 1, 2, n ≥ n0 , m ≥ 1 , t ∈ A .

This together with Proposition 2.4 implies that there exist positive constants C
and γ such that for n ≥ n0 , m ≥ 1 , t ∈ A ,

|Zj,n+m(βc − iλ−nt)| ≤ C exp(−γ 2m) , j = 1, 2,(6.1)
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Zj,n+m(βc + λ−n) ≤ C exp(−γ 2m) , j = 1, 2, 3, 4.(6.2)

Now let n0 be as above. Let n be a positive integer satisfying n > n0 ,
and assume that t ∈ R and |t| ∈ [1, λn−n0−1] . Let m be the integer part of
log |t|
log λ

+ 1 . Then m satisfies n − m ≥ n0 and λ−1 ≤ λ−m |t| < 1 . Then

|φn(t)| ≤ Z1,n(βc)−1 |Z1,n(βc − iλ−nt)|
= Z1,n(βc)−1 |Z1,n−m+m(βc − iλ−(n−m)(λ−mt))|
≤ Z1,n(βc)−1 C exp(−γ 2m)

≤ Z1,n(βc)−1 C exp(−γ |t|log 2/ log λ) .

Since Z1,n(βc) → xc and φn(t) → g(it) , n → ∞ , Proposition 4.7 and the
dominated convergence theorem implies,∫

R

|χ[0,λn−n0−1](|t|)φn(t) − g(it)|dt → 0 , n → ∞ .

On the other hand,∫
R

|χ[0,λn−n0−1](|t|)φn(t) − φn(t)|dt

≤ 2
∫ ∞

λn−n0−1
exp(−h2

nt2/2)dt

≤ 2 (h2
nλn−n0−1)−1 exp(−(hnλn−n0−1)2/2)

= 2λn0−1b−2λnn−1 exp(−λ−2n0+2b2n/2) → 0 , n → ∞ ,

if b is sufficiently large. Hence for sufficiently large b,∫
R

|φn(t) − g(it)|dt → 0 , n → ∞ ,

which implies the Proposition. This completes the proof. �

Proposition 6.2. There exist positive constants C1 , C2 , and real constants
γ1 , γ2 , such that

C1 kγ1 exp(βc k) ≤ N(k) ≤ C2 kγ2 exp(βc k) , k ≥ 1 .

Proof. Let D : W (0) → Z+ be a map defined by

D(w) = min{n ≥ 0; w(i) ∈ Fn for all i ≥ 0 . } ,(6.3)

Let
Mn =

∑
w∈W (0) , D(w)≤n

exp(−βc L(w)) , n ∈ Z+ .
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Classifying the summation in the definition of Mn+1 in a similar way as in
the proof of the recursion relations in eq. (2.2), it follows that there exists a
polynomial f1 of four variables with positive coefficients, such that

Mn+1 ≤ f1(�Zn(βc))Mn , n ∈ Z+ .(6.4)

By Corollary 3.6, �Zn(βc) converges as n → ∞, hence there exist positive con-
stants A1 and A2 > 1 such that

Mn ≤ A1 An
2 , n ∈ Z+ .(6.5)

By definition, 2D(w)−1 ≤ L(w) follows. Therefore,

exp(−βc k)N(k) ≤ M[log k/ log 2]+1 ≤ A1 A2
2 A

log k/ log 2
2 ,

which proves the upper bound in the Proposition.
To prove the lower bound, let b be a sufficiently large number satisfying

Proposition 6.1. Note that

(p∗n(�xc) ∗ gn)(ξ) =
∫
R

gn(ξ − η)p∗n(�xc)(dη) .

Let kn =
√

2 log λ b nλ−n . Since∫
R\[ξ−kn,ξ+kn]

gn(ξ − η)p∗n(�xc)(dη) ≤ gn(kn) = (2πb2n)−1/2 → 0 , n → ∞ ,

Proposition 6.1 implies that

sup{|ρ(�xc)(ξ) −
∫

[ξ−kn,ξ+kn]

gn(ξ − η)p∗n(�xc)(dη)| ; ξ ∈ R} → 0 , n → ∞ .

From Proposition 4.8, this implies that there exist an integer n2 ≥ 1 and a
positive constant ε such that h−1

n p∗n(�xc)([ξ − kn, ξ + kn]) ≥ ε , n ≥ n2 , ξ ∈
[λ−1, λ2] .

Let k ∈ Z+ . Let n be the integer satisfying λ−nk ∈ [1, λ] . For sufficiently
large k, n ≥ n2 and kn ≤ 1 − λ−1 follows, hence p∗n(�xc)([λ−nk − 2kn, λ−nk]) ≥
hnε . Therefore,

Z1,n(βc)hnε ≤
∑

w∈W
(n)
1 , k−2knλn≤L(w)≤k

exp(−βcL(w))

≤ exp(βc2knλn) exp(−βck)N(k) ,

because w ∈ W
(n)
1 with L(w) ≤ k can be extended to a path in W (0) with

L = k . It follows that

N(k) ≥ Z1,n(βc)ε bλ−nn1/2 exp(−2βcb (2 log λ)1/2n) exp(βck) .
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Since n ≤ log k/ log λ , this implies the lower bound in the Proposition. This
completes the proof. �

The next step is to give bounds for the numbers of short paths and long
paths. Let

Un,m =
∑

w∈W (0), D(w)≤n, L(w)≥λn+m/2

exp(−βcL(w)) ,

and
Vn,m =

∑
w∈W (0), D(w)=n+1, L(w)≤λn−m

exp(−βcL(w)) , n ∈ Z+ , m ∈ Z+ .

Proposition 6.3. There exist positive constans A2 , C , and γ such that

Un,m ≤ CAn
2 exp(−γλm/2) ,

and
Vn,m ≤ CAn

2 exp(−γ2m) , n ∈ Z+ , m ∈ Z+ .

A2 may be taken to be the same as in eq. (6.5).

Proof. Put r = (λ −
√

λ)/5 , and let

Sj,n,m =
∑

w∈W
(n)
j

, L(w)≥λn+m/2r

exp(−βcL(w)) , n ∈ Z+ , m ∈ Z+ , j = 1, 2, 3, 4,

By a graphical consideration similar to that used to obtain eq. (6.4), one finds

Un+1,m ≤ f1(�Zn(βc))Un,m+1 + (
4∑

j=1

Sj,n,m
∂f1

∂xj
(�Zn(βc)))Mn ,

where f1(�x) may be chosen to be the same as that in eq. (6.4), and f1(0, 0, 0, 0) =
1 . In particular, f1 is a polynomial of four variables with positive coefficients. As
in the derivation of eq. (6.5), there exists an integer n1 such that f1(�Zn(βc)) ≤
A2 , n ≥ n1 , where A2 is as in eq. (6.5). Corollary 3.6 and eq. (6.5) imply that
there exists a positive constant C1 such that

A
−(n+1)
2 Un+1,m ≤ A−n

2 Un,m+1 + C1

4∑
j=1

Sj,n,m , n ≥ n1 , m ≥ 0 .

Note that since L(w) ≤ 3 · 4D(w) , it follows that Un,m = 0 if λn+m/2 > 3 · 4n ,
which holds if m ≥ 3n and n > 4 . We may assume that n1 > 4 . Hence

A−n
2 Un,m ≤ C1

[ 34 n]∑
k=0

4∑
j=1

Sj,n−k−1,m+k , n ≥ 4n1 , m ≥ 0 .
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On the other hand,

Sj,n,m ≤ exp(−rλm/2)
∑

w∈W
(n)
j

exp(−(βc − λ−n)L(w))

= exp(−rλm/2)Zj,n(βc − λ−n) .

Corollary 3.6 and Proposition 4.5 imply that there exists a constant C2 such
that

Z1,n(βc − λ−n) = g
(n)
1 (1)Z1,n(βc) < C2 , n ∈ Z+ ,

and
Z2,n(βc − λ−n) = h(n)(1)Z2,n(βc) < C2 , n ∈ Z+ .

Proposition 2.4 implies

Z3,n(βc − λ−n) ≤ Rn(�xc,n)Z1,n(βc − λ−n)
≤ R0(�xc,n)C2

= 2xc,nC2 ,

where �xc,n = (xc,n, x2
c,n, x2

c,n, x3
c,n) with xc,n = exp(−βc + λ−n) . Similar argu-

ment holds also for Z4,n(βc − λ−n) . Therefore Zj,n(βc − λ−n) , j = 1, 2, 3, 4,
are bounded, which, together with the above estimates on A−n

2 Un,m and Sj,n,m

implies the bound for Un,m in the Proposition.
To prove the bound for Vn,m , let

Tj,n,m =
∑

w∈W
(n+1)
j

, L(w)≤λn−m

exp(−βcL(w)) ,

n ∈ Z+ , m ∈ Z+ , m ≤ n , j = 1, 2, 3, 4,

and put �Tn,m = (T1,n,m, T2,n,m, T3,n,m, T4,n,m) . By a graphical consideration
similar to that used above, one finds

Vn,m ≤ f1(�Tn,m)Mn − Mn = (f1(�Tn,m) − f1(0, 0, 0, 0))Mn .

Note that if L(w) ≤ λn−m then 1 − λm−nL(w) ≥ 0 . Therefore for j = 1, 2, 3, 4,

Tj,n,m ≤
∑

w∈W
(n)
j

exp(−(βc + λm−n)L(w) + 1) = e Zj,n(βc + λm−n) .

This with eq. (6.2) and eq. (6.5) implies the bound for Vn,m. This completes the
proof. �

The proof of Theorem 1.4 in Section 1 is as follows.
The assertion (1) is a direct consequence of Proposition 6.2.
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To prove assertion (2), let K(k) = [log k/ log λ] , k ∈ Z+ . Note that λK(k) ≤
k < λK(k)+1 . Then Proposition 6.3 implies that for m ∈ Z+ and k ∈ Z+ with
m ≤ K(k) ,

�{w ∈ W (0) | L(w) = k , D(w) ≤ K(k) − m}
≤ exp(βck) UK(k)−m,2m

≤ C exp(βck + (K(k) − m) log A2 − γλm)
≤ C exp(βck + (log A2/ log λ) log k − γλm) .

This and Proposition 6.2 imply that for sufficiently large α,

P̃k[D(w) ≤ K(k) − α log log k]
≤ C C−1

1 exp((log A2/ log λ − γ1) log k − γ(log k)α log λ)
≤ C′ exp(−(log k)3) .

Note that 2D(w)−1 ≤ ||w|| ≤ 2D(w) . Therefore for sufficiently large α

P̃k[ ||w|| < (log k)−αk1/κ ] exp((log k)2) → 0 , k → ∞ .

Next note that for m ∈ Z+ and � ∈ Z+ , Proposition 6.3 implies

�{w ∈ W (0) | L(w) = k , D(w) = K(k) + m + � + 2}
≤ exp(βck)VK(k)+m+�+1,m+�

≤ C exp(βck)AK(k)+m+�+1
2 exp(−γ2m+�)

≤ CA2 exp(βck + K(k) log A2 + m log A2 − γ2m−1)A�
2 exp(−γ2�−1) .

Therefore,

P̃k[D(w) ≥ K(k) + (α/ log 2) log log k]

=
∞∑

�=0

P̃k[D(w) = K(k) + � + (α/ log 2) log log k]

≤ C (C1A2)−1
∞∑

�=0

A�
2 exp(−γ2�−1)

× exp((log A2/ log λ − γ1) log k + (α log A2/ log 2) log log k − (γ/8)(log k)α) .

Therefore, for sufficiently large α

P̃k[ ||w|| > (log k)αk1/κ ] exp((log k)2) → 0 , k → ∞ .

This proves the assertion (2).
Let k ∈ Z+ and s > 0 . Note that the reflection principle similar to the

one in the proof of the Lemma (4.2) in [4] holds also in the present case of
three-dimensional pre-Sierpinski gasket, which implies

EP̃k [2(D(w)−1)s , |w(k)| ≤ 2D(w)−1] ≤ EP̃k [2(D(w)−1)s , |w(k)| ≥ 2D(w)−1] .
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This with |w(L(w))| ≤ ||w|| ≤ 2D(w) implies

2−s−1EP̃k [2sD(w)] ≤ EP̃k [ |w(k)|s ] ≤ EP̃k [ ||w||s ] ≤ EP̃k [ 2sD(w) ] .(6.6)

Note next that

EP̃k [ ||w||s ] ≥ ((log k)−αk1/κ)s(1 − P̃k[ ||w|| ≤ (log k)−αk1/κ ]) .

With assertion (2) this implies

lim inf
k→∞

(log k)sαk−s/κEP̃k [ ||w||s ] > 0 .(6.7)

Similarly,

EP̃k [ ||w||s ] ≤ ((log k)αk1/κ)s + ksP̃k[ ||w|| ≥ (log k)αk1/κ ] ,

and assertion (2) imply

lim sup
k→∞

(log k)−sαk−s/κEP̃k [ ||w||s ] < ∞ .(6.8)

It is easy to see that eq. (6.6), eq. (6.7), and eq. (6.8) imply assertion (3). This
completes the proof.

A Recursion relations

In this Appendix, we give the complete form of the function �Φ defined in Propo-
sition 2.1.

Φ1(x, y, z, w)
= x2 + 2x3 + 2x4 + 4x3y + 6x2y2

+ 4xz + 4xw + 10x2z + 8x2w + 12x3z + 8x3w + 16x2yz

+ 8x2yw + 12xy2z + 4z2 + 8zw + 4w2 + 14xz2 + 16xzw

+ 20x2z2 + 16x2zw + 12xyz2 + 6z3 + 8z2w + 8xz3 ,

Φ2(x, y, z, w)
= x4 + 4x3y + 22y4

+ 8x3z + 8x3w + 24x2yz + 24x2yw + 20x2z2 + 32x2zw

+ 8x2w2 + 36xyz2 + 48xyzw + 16xz3 + 24xz2w + 8yz3 + 2z4 ,

Φ3(x, y, z, w)
= x2z + 2x2w + 2x3z + 4x3w + 4x2yz + 8x2yw

+ 6xy2z + 12xy2w + 4xz2 + 12xzw + 8xw2 + 10x2z2

+ 24x2zw + 8x2w2 + 6y2z2 + 24xyzw + 12xyz2
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+ 8zw2 + 10z2w + 3z3 + 4yz3 + 24xz2w + 12xz3 + 2z4 ,

Φ4(x, y, z, w)
= x2z2 + 4x2zw + 4x2w2 + 2xyz2 + 8xyzw

+ 8xyw2 + 3y2z2 + 12y2zw + 4xz3 + 16xz2w

+ 16xzw2 + 4yz3 + 12yz2w + 3z4 + 8z3w .

B Derivative matrices.

We give the explicit forms of a 4×4 matrix B and a 9×9 matrix ∂H(1)(a) here.
B is defined by

B = (
∂t�Φ
∂x1

(�a), . . . ,
∂t�Φ
∂x4

(�a)),

Then an explicit calculation gives

B =

⎛⎜⎜⎝
p q p + s 2s
q r 2q 2q
0 0 1

2 (p − s) p − s
0 0 0 0

⎞⎟⎟⎠ ,

with
p = 8x3

c + 6x2
c + 2xc + 12x2

cyc + 12xcy
2
c ,

q = 4x3
c + 12x2

cyc,

r = 4x3
c + 88y3

c ,

and
s = 2xc + 4x2

c + 4x3
c + 4x2

cyc.

From this it is straightforward to obtain the eigenvalues,

λ1 =
1
2
{p + r +

√
(p − r)2 + 4q2} = 2.7965 . . . ,

λ2 =
1
2
(p − s) = 0.3861 . . . ,

λ3 =
1
2
{p + r −

√
(p − r)2 + 4q2} = 0.2537 . . . ,

and
λ4 = 0.

Let
∂H(n)(z) def= (

∂

∂x1

tH(n)(z), . . . ,
∂

∂x9

tH(n)(z)).
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Then

∂H(1)(a) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p q p + s 2s 0 0 0 0 0
q r 2q 2q 0 0 0 0 0
0 0 1

2 (p − s) p − s 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 p q p + s 2s 0
0 0 0 0 q r 2q 2q 0
0 0 0 0 0 0 1

2 (p − s) p − s 0
0 0 0 0 0 0 0 0 0
q
2 16y4

c q q q
2 16y4

c q q 4x3
c + 56y3

c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

∂H(1)(a) has double eigenvalues, λ = λ1, λ2, λ3, 0 and a single eigenvalue, 4x3
c +

56y3
c = 0.3276 . . .. The left eigenvectors corresponding to λ are (1, α, 2, 2, 0, 0, 0, 0, 0)

and (0, 0, 0, 0, 1, α, 2, 2, 0), with α = (λ − p)/q = 0.1731 . . ..
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