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ABSTRACT

We consider a system of partial differential equations for the densities of components
of one dimensional incompressible fluid mixture whose motion is driven by evaporation.
We prove existence and give explicit form of unique global classical non-negative solution
to initial value problem for the system. The solution is known to be an infinite particle
limit of stochastic ranking processes, which is a simple stochastic model of time evolutions
of Amazon Sales Ranks. As a practical application, we collected data from the web and
performed statistical fits to our formula. The results suggest that the system of equations
and solutions, though very simple, may have applications in the analysis of online rankings.
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1 Introduction.

Let fi � 0, i = 1, 2, · · ·, be non-negative constants, and consider the following system of
non-linear partial differential equations for the functions ui(y, t), i = 1, 2, · · ·, and v(y, t),
defined on (y, t) ∈ [0, 1) × R+:

∂ ui(y, t)

∂t
+

∂ (v(y, t) ui(y, t))

∂y
= −fiui(y, t), i = 1, 2, · · · , (1)

∑

j

uj(y, t) = 1 . (2)

We consider initial value problems for smooth non-negative initial data ui(y, 0) = ui(y);

ui(y) � 0, i = 1, 2, · · · ,
∑

j

uj(y) = 1, 0 � y < 1,

with the boundary conditions at y = 0 and y = 1:

v(1 − 0, t) = 0, (3)

ui(0, t) =
fiρi∑

j

fjρj

, i = 1, 2, · · · , (4)

for t � 0, where, for each i,

ρi =

∫ 1

0

ui(z) dz, (5)

and we assume
0 <

∑

j

fjρj < ∞. (6)

Note that adding up (1) over i and applying (2) we have

∂ v(y, t)

∂y
= −

∑

j

fjuj(y, t), (7)

which, with (3), determines v in terms of ui . Note also that (2) obviously implies

∑

j

ρj = 1. (8)

Given the constants fi and the initial data ui(y), the set of equations (1) (2) (3) (4)
defines the evolution of our system. The following arguments and results hold both for finite
components (i = 1, 2, · · · , N) and infinite components. (In fact, we can extend the system
and the solution to a case with any probability space Ω, by replacing ui(y, t) with a measure
μ(dω, y, t). See [4] for probability theoretic arguments.)

A physical meaning of the system is as follows. We are considering a motion of in-
compressible fluid mixture in an interval of length 1, where ui(y, t) is the density of i-th
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component at space-time point (y, t). (2) implies that we normalize total density of the fluid
mixture to be 1 at each space-time point (y, t), hence ui(y, t) represents the ratio of i-th
component at (y, t). We are naturally interested in the non-negative solutions ui(y, t) � 0.
v(y, t) is the velocity field of the fluid. (1) is the equation of continuity, and the right-hand-
side implies that each component evaporates with rate fi per unit time and unit mass. Note
that the set of equations (7) and (3) is equivalent to

v(y, t) =
∑

j

fj

∫ 1

y

uj(z, t)dz, (9)

which implies that the velocity field, or the motion of the fluid, is caused solely by filling the
amount of fluid which evaporated from the right side of the point y. In particular, we have
no flux through the boundary y = 1 (v(1 − 0, t) = 0).

The boundary condition (4) at y = 0 is so tuned by the initial data that the loss of mass
by evaporation is compensated by the immediate re-entrance at y = 0 as liquidized particles,
so that the total mass of each fluid component in the interval [0, 1) is conserved over time:

∫ 1

0

ui(z, t) dz = ρi, t � 0. (10)

In fact, (10) is equivalent to (4), under the conditions (1) (2) (3) (5), if supi fi < ∞. (See
Appendix A.)

Let

yC(y, t) = 1 −
∑

j

e−fjt

∫ 1

y

uj(z) dz, 0 � y < 1, t � 0. (11)

For each t � 0, yC(·, t) : [0, 1) → [yC(0, t), 1) is a continuous, strictly increasing, onto
function of y, and its inverse function ŷ(·, t) : [yC(0, t), 1) → [0, 1) exists:

1 − y =
∑

j

e−fjt

∫ 1

ŷ(y,t)

uj(z) dz, yC(0, t) � y < 1, t � 0. (12)

yC(y, t) denotes the position of a fluid particle at time t (on condition that it does not
evaporate up to time t) whose initial position is y. ŷ(y, t) denotes the initial position of a
fluid particle located at y (� yC(0, t)) at time t.

With slight abuse of notations, we will often write yC(t) for yC(0, t):

yC(t) = yC(0, t) = 1 −
∑

j

ρje
−fjt, t � 0. (13)

Note that
∑

j

fjρj > 0, as assumed in (6), implies that yC(t) is strictly increasing (as well

as continuous) in t, and (8) implies yC(0) = 0. Hence, for each 0 < y < yC(t) there exists
unique t0 = t0(y) ∈ (0, t) such that

yC(t0(y)) = y, 0 � y < yC(t), t > 0. (14)

In Section 2 we prove the following.
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Theorem 1 There exists a unique global (i.e., for all t � 0) non-negative classical solution to
the initial value problem for the system of partial differential equations defined by (1)–(5), which is
explicitly given by (9) and

ui(y, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e−fit0(y)fiρi∑

j

e−fjt0(y)fjρj

, t > t0(y),

e−fitui(ŷ(y, t))∑

j

e−fjtuj(ŷ(y, t))
, 0 � t < t0(y),

� (15)

Note that for t > t0(y) the solution is stationary:

∂ ui

∂t
(y, t) = 0, t > t0(y). (16)

For t < t0(y), effect of initial conditions exists in the form of wave propagation.
In natural phenomena where evaporation is active, such as producing salt out of sea

water, viscosity, surface tension, and external forces such as gravitational forces dominate,
and the effect of evaporation on the motion of fluid would be relatively too small to observe.
Thus the equation and the solution we consider in this paper may not have attracted much
practical attention. However, there are phenomena on the web for which our formulation
may work as a simplified mathematical model, such as the time evolutions of rankings of
book sales in the online booksellers. Such possibility is theoretically based on a result that
(15) appears as an infinite particle limit of the stochastic ranking process [4], which is a
simple model of the time evolutions of e.g., the number known as the Amazon Sales Rank.
(We note that this number has mathematically little to do with the perhaps more popular
notion of Google Page Ranks.) We collected data of the time evolution of the numbers from
the web, and performed statistical fits of the data to (13). Considering the simplicity of our
model and formula, we find the fits to be rather good. The results suggest that there is a
new application of our results in the analysis of online rankings.

The plan of this paper is as follows. In Section 2 we give a proof of Theorem 1. In
Section 3 we recall the stochastic ranking process defined in [4], and relate (15) to the
infinite particle limit studied in [4]. In Section 4 we give results of fits to (13) of data from
the web.

The authors would like to thank Prof. T. Miyakawa, Prof. M. Okada, Prof. H. Nawa, and
Prof. T. Namiki for taking interest in our work and for inviting the authors to their seminars.
The research of K. Hattori is supported in part by a Grant-in-Aid for Scientific Research
(C) 16540101 from the Ministry of Education, Culture, Sports, Science and Technology, and
the research of T. Hattori is supported in part by a Grant-in-Aid for Scientific Research (B)
17340022 from the Ministry of Education, Culture, Sports, Science and Technology.

2 Proof of the main theorem.

Put

Ui(y, t) =

∫ 1

y

ui(z, t) dz, i = 1, 2, · · · , (17)
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and Ui(y) =
∫ 1

y
ui(z) dz for the initial data Ui(y, 0) = Ui(y). With (17), the the system of

equations (1)–(5) is equivalent to the following: Ui(y, t) is decreasing in y and Ui(1−0, t) = 0,
and

∂ Ui

∂t
(y, t) + v(y, t)

∂ Ui

∂y
(y, t) = −fiUi(y, t), i = 1, 2, · · · , (18)

∑

j

Uj(y, t) = 1 − y , (19)

v(y, t) =
∑

j

fj Uj(y, t), (20)

for 0 � y < 1, t � 0 (note (9)), and noting (10),

Ui(0, t) = ρi i = 1, 2, · · · , t � 0. (21)

The remainder of the proof is a simple application of characteristics. For each 0 � y0 < 1
let yB = yB(y0; t) be a solution to an ODE

d yB

dt
(y0; t) = v(yB(y0; t), t), t � 0, yB(y0; 0) = y0 , (22)

and put
φi(t) = Ui(yB(y0; t), t). (23)

With (22) and (18) it follows that

d φi

dt
(t) =

∂ Ui

∂t
(yB(y0; t), t) + v(yB(y0; t), t)

∂ Ui

∂y
(yB(y0; t), t)

= −fiUi(yB(y0; t), t) = −fiφi(t),

hence, with φi(0) = Ui(y0, 0) = Ui(y0), φi is uniquely solved as

φi(t) = Ui(y0) e−fit. (24)

With (20) and (22), we then find

d yB

dt
(y0; t) =

∑

j

fjUj(y0) e−fjt,

hence, using (19) and (17), we have

yB(y0; t) = 1 −
∑

j

Uj(y0) e−fjt = 1 −
∑

j

∫ 1

y0

uj(z) dz e−fjt = yC(y0, t), (25)

where yC is defined in (11). With (12), (23) and (24) we uniquely obtain

Ui(y, t) = Ui(ŷ(y, t)) e−fit.



6

Differentiating by y and using (17) and (25)

ui(y, t) =

(
∂ yB

∂y0

(ŷ(y, t); 0)

)−1

ui(ŷ(y, t)) e−fit =
ui(ŷ(y, t)) e−fit

∑

j

uj(ŷ(y, t)) e−fjt
,

where
∂ yB

∂y0
is the derivative of yB = yB(y0; t) with respect to the parameter y0. This proves

(15) for y > yC(t), i.e., for 0 � t < t0(y).
Next let t > t0(y) and put t1 = t − t0(y) ∈ (0, t). Let yA be a solution to an ODE

y′
A(s) = v(yA(s), s), s � t1 , yA(t1) = 0 , (26)

and put
φi(s) = Ui(yA(s), s), s � t1 . (27)

Note that (21) implies φi(t1) = Ui(0, t1) = ρi, hence, as below (22), φi is uniquely solved as

φi(s) = ρi e
−fi(s−t1). (28)

With (20) and (26), we then find

y′
A(s) =

∑

j

fjρj e−fj(s−t1),

Note that (5) and (2) imply
∑

j

ρj = 1. Hence,

yA(s) = 1 −
∑

j

ρj e−fj(s−t1) = yC(s − t1), s � t1 . (29)

where yC is defined in (13).
Putting s = t in (27) and (28), using (29), and recalling that t1 = t − t0(y), we have,

with (14),
Ui(y, t) = Ui(yC(t0(y)), t) = ρi e

−fit0(y).

Differentiating by y and using (17), (14) and (13),

ui(y, t) =

(
d yC

dt
(t0(y))

)−1

ρifi e
−fit0(y) =

ρifi e
−fit0(y)

∑

j

ρjfje
−fjt0(y)

,

which proves (15) for t > t0(y). This completes a proof of Theorem 1.
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Remark. Observing (18) as a Burgers type system, absence of shock is essential in our
proof for unique existence of global classical solution and preservation of regularity. A
sufficient condition for the global absence of shock is (with other assumed conditions such
as stationary boundary conditions and non-negativity of Ujs)

∑

j

∂ Uj

∂y
(y0) � −1, (30)

which is satisfied by (19), or the incompressibility condition (2). In fact, without (19), we
have, in place of (25),

yB(y0; t) = y0 +
∑

j

Uj(y0) (1 − e−fjt),

which is strictly increasing in y0 for any t � 0, if (30) holds. Hence ŷ(·, t), the inverse function
of yB(·; t) exists, and consequently, Ui(y, t) is solved. �

Before closing this section, we give a couple of examples of the solution to the equation
of motion.

Example 1 (One particle type). For a pure fluid, ρ1 = 1, hence we have u1(y, t) ≡ 1.
Since there is only one type of incompressible fluid, the density is constant. However, there
is a flow driven by evaporation even in this case, and we actually have yC(t) = 1 − e−f1t.

Example 2 (Two particle types with f2 = 0). Consider a mixture of 2 components
with the ratios satisfying ρ1 > 0 and ρ2 = 1 − ρ1 > 0. f2 = 0 means no evaporation, so the
situation is a salty sea with salt density ρ2, where evaporation and flow from a river balance.
We have

yC(t) = ρ1(1 − e−f1t), t0(y) = − 1

f1

log(1 − y

ρ1

).

The expressions of ui(y, t) for y < yC(t) become simple:

v(y, t) = f1 (ρ1 − y), u1(y, t) ≡ 1, u2(y, t) ≡ 0 .

The pure water from the river comes in up to y < yC(t). (Note that we are considering a
fictitious 1-dimensional case where no spacial mixing such as turbulence occurs and we have
no other dynamics such as diffusion.)

If, furthermore, the initial distribution is uniform on [0, 1): ui(y) = ρi, i = 1, 2, then the
expressions for y > yC(t) are also simple:

yC(y, t) = 1 − (1 − y)(ρ1e
−f1t + ρ2), ŷ(y, t) = 1 − 1 − y

ρ1e−f1t + ρ2
,

and consequently,

v(y, t) = (1 − y)f1
ρ1e

−f1t

ρ1e−f1t + ρ2

, u1(y, t) =
ρ1e

−f1t

ρ1e−f1t + ρ2

, u2(y, t) =
ρ2

ρ1e−f1t + ρ2

,

for y > yC(t). (In general, the formulas are dependent on initial data in complex ways, and
we do not have explicit formula.)
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3 Infinite particle limit of stochastic ranking process.

In this section, we first recall the stochastic ranking process defined in [4], and relate its
infinite particle limit proved in [4] to (15).

Let (Ω,B, P) be a probability space. A stochastic ranking process of N particles, {X(N)
i (t) |

t � 0, i = 1, 2, · · · , N}, is defined as follows. We assume that the initial configuration

X
(N)
i (0) = x

(N)
i,0 , i = 1, 2, · · · , N , is given, such that x

(N)
1,0 , x

(N)
2,0 , · · · , x(N)

N,0 is a permutation of

1, 2, · · · , N . For each i let τ
(N)
i,j , j = 0, 1, 2, · · ·, be an increasing sequence of random jump

times, such that {τ (N)
i,j | j = 0, 1, 2, · · ·}, i = 1, 2, · · · , N , are independent (independence

among particles), τ
(N)
i,0 = 0 and {τ (N)

i,j+1 − τ
(N)
i,j | j = 0, 1, 2, · · ·} are i.i.d. with the law of

τ
(N)
i = τ

(N)
i,1 being

P[ τ
(N)
i � t ] = 1 − e−w

(N)
i t, t � 0, (31)

where, for each i, w
(N)
i > 0 is a given constant (jump rate). (Note that with probability

1, τ
(N)
i,j , j = 0, 1, 2, · · ·, is strictly increasing, and that τ

(N)
i,j �= τ

(N)
i′,j′ for any different pair of

suffices (i, j) �= (i′, j′).) For each i = 1, 2, · · · , N we define the time evolution of X
(N)
i by,

X
(N)
i (t) = x

(N)
i,0 + �{i′ ∈ {1, 2, · · · , N} | x

(N)
i′,0 > x

(N)
i,0 , τ

(N)
i′,1 � t}, 0 � t < τ

(N)
i,1 ,

where �A denotes the number of elements in the set A, with �∅ = 0, and for each j = 1, 2, 3, · · ·

X
(N)
i (τ

(N)
i,j ) = 1, and

X
(N)
i (t) = 1 + �{i′ ∈ {1, 2, · · · , N} | ∃j′ ∈ Z+; τ

(N)
i,j < τ

(N)
i′,j′ � t}, τ

(N)
i,j < t < τ

(N)
i,j+1.

Proposition 2 ([4]) Assume that the empirical distribution of jump rates converges weakly to a

probability distribution λ: λ(N)(dw) =
1

N

N∑

i=1

δ(w − w
(N)
i ) dw → λ(dw), N → ∞. Then

lim
N→∞

1

N
�{i | τ

(N)
i � t} = yC(t), in probability,

where

yC(t) = 1 −
∫

[0,∞)

e−wtλ(dw), t � 0. (32)

�

Proposition 2 (and, the main theorem in [4]) holds for any distribution λ with finite mean
(see [4] for details). Here in this section, in order to consider the situation consistent with
that of Section 1, we will restrict ourself to the case where λ is a discrete measure, i.e., is
concentrated on a finite or a countable set of non-negative numbers {f1, f2, f3, · · ·}. Namely,
we assume a form

λ(dw) =
∑

j

ρjδ(w − fj)dw, (33)

where δ(w − fj)dw is a unit measure concentrated on fj , and ρj are non-negative constants
satisfying (8) and (6). Then (32) coincides with (13).
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Let

Y
(N)
i (t) =

1

N
(X

(N)
i (t) − 1), (34)

and

y
(N)
i,0 =

1

N
(x

(N)
i,0 − 1) ∈ [0, 1) ∩ N−1

Z.

We consider the N → ∞ limit of the empirical distribution on the product space of jump
rate and spacial position;

μ
(N)
t (dw, dy) =

1

N

∑

i

δ(w − w
(N)
i )δ(y − Y

(N)
i (t)) dw dy. (35)

According to [4], we impose that the initial distribution converges weakly to a probability
measure;

μ
(N)
0 (dw, dy) =

1

N

∑

i

δ(w−w
(N)
i )δ(y−y

(N)
i,0 ) dw dy → μ0(dw, dy), N → ∞ (weakly.) (36)

To meet the notation in Section 1, we write

μ0(dw, dy) = μy,0(dw) dy =
∑

j

uj(y) dy δ(w − fj)dw, (37)

where we assume that uj(y) satisfies the assumptions in Section 1. Note that (5) and (2)
respectively implies that the first and the second marginal of μ0 is λ in (33) and the Lebesgue

measure, respectively. Note also that (6) implies (with (33))

∫
wλ(dw) =

∑

j

fjρj < ∞. (In

[4] it has also been assumed that λ({0}) = 0 but the results hold in the present situation
with (6).)

(37) implies

1 −
∫ 1

y

∫ ∞

0

e−wtμ0(dw, dy) = yC(y, t),

where yC is as in (11), hence its inverse function ŷ(y, t) in y exists and is given by (12). Our
notations are now consistent with those in [4], with the correspondence (33) and (37). The
main theorem in [4] then implies that the joint empirical distribution of particle types and
positions at time t

μ
(N)
t (dw, dy) =

1

N

∑

i

δ(w − w
(N)
i )δ(y − Y

(N)
i (t)) dw dy (38)

converges as N → ∞ to a distribution μy,t(dw) dy on R+ × [0, 1). The limit distribution is
absolutely continuous with respect to the Lebesgue measure on [0, 1). The density μy,t(dw)
with regard to y is given by

μy,t(dw) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

we−wt0(y)λ(dw)∫ ∞

0

we−wt0(y)λ(dw)

, t > t0(y),

e−wtμŷ(y,t),0(dw)∫ ∞

0

e−wtμŷ(y,t),0(dw)
, 0 � t < t0(y).

(39)
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To see the correspondence between (39) and (15) in Section 2, let us rewrite (39) in terms
of (33) and (37). For y < yC(t), we use (33) in (39) to find

we−wt0(y)λ(dw)∫ ∞

0

we−wt0(y)λ(dw)

=

∑

j

fje
−fj t0(y)ρjδ(w − fj)dw

∑

j

fje
−fjt0(y)ρj

which, according to (15), is equal to
∑

j

uj(y, t)δ(w− fj)dw. Similarly, for y > yC(t), we use

(37) in (39) to find

e−wtμŷ(y,t),0(dw)∫ ∞

0

e−wtμŷ(y,t),0(dw)

=

∑

j

e−fjtuj(ŷ(y, t)) δ(w − fj)dw

∑

j

e−fjtuj(ŷ(y, t))
=

∑

j

uj(y, t) δ(w − fj)dw.

In both cases, we have the correspondence

μy,t(dw) =
∑

j

ui(y, t) δ(w − fj)dw,

which relates the solution (15) of the PDE in Section 1 to the infinite particle limit of the
stochastic ranking process in [4].

4 Possible application to rankings on the webs.

4.1 Pareto distribution.

The stochastic ranking process may be viewed as a mathematical model of the time evolution
of rankings such as that of books on the online bookstores’ web (e.g., www.Amazon.co.jp).
In this example, N stands for the total number of books, i represents a specific title of a
book, w

(N)
i is the average rate with which the book i is sold, x

(N)
i,0 is the initial position

(ranking) of the book, τ
(N)
i,j is the random time at which the book i is sold for the j-th time,

and X
(N)
i (t) is the ranking of the book i at time t.

A particle (a book, in the case of online booksellers) in the ranking jumps randomly to
the rank 1 (each time a copy of the book is sold), and increases the ranking number by 1
each time some other particle of larger ranking number jumps to rank 1. Because an increase
in ranking number is a result of jumps of very large number of particles in the tail side of
the ranking, the particle effectively moves on the ranking queue in a deterministic way, even
though each jump occurs at a random time. The jump corresponds to the evaporation in
the fluid model. We can therefore predict the time evolutions of rankings appearing on the
web rankings based on our model.

Here we try to see how a trajectory of a particle (13) could be observed in the web
rankings. In applying (13) to the actual rankings, we need to choose the distribution of
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evaporation rates {(fi, ρi) | i = 1, 2, · · · , N}. In the case of social or economic studies such as
online booksellers, this corresponds to choosing the distribution of activities or transactions.
In the case of online booksellers, we have to choose the distribution of sales rates over books.
The Pareto distribution (also called log-linear distribution in social studies, or power-law
in physics literatures) is traditionally used as a basic model distribution for various social
rankings, perhaps a most well-known example is the ranking of incomes. Let N be the total
size of population, and for i = 1, 2, · · · , N , denote by fi the income of the i-th wealthiest
person. If

fi = a

(
N

i

)1/b

, ρi =
1

N
, i = 1, 2, 3, · · · , N, (40)

holds for some positive constants a and b, then the distribution of incomes is said to satisfy the
Pareto distribution. (The Pareto distribution assumes all the constituents to have distinct
fi , which leads to equal weight ρi = 1/N in our notation.) The factor a corresponds to the
smallest income, and the exponent b reflects a social equality of incomes: in fact the ratio
of the largest income to the smallest is f1/fN = N1/b, which is close to 1 if b is large (a fair
society), while is large (society is in monopoly) if b is small. (Our b corresponds to α in a
standard textbook on statistics, θ in [3], and −1/β2 in [2].)

Substituting (40) in (13) of Section 2, and approximating the summation by integration,
we have, after a change of variable,

yC(t) = 1 − b(at)bΓ(−b, at) + O(N−1), (41)

where Γ(z, p) =

∫ ∞

p

e−wwz−1 dw is the incomplete Gamma function. yC(t) is a relative

ranking normalized by N , so the time evolution of ranking xC(t) is

xC(t) = 1 + N yC(t). (42)

The O(N−1) contribution in (41) is (by a careful calculation) seen to be non-negative and

bounded by
1

N
e−at � 1

N
, leading to a difference of at most 1 in the ranking xC(t), which is

insignificant for our applications below, so we will ignore it.
Note that Γ(−b, at) → ∞ as t → 0, for b > 0. This divergence is harmless because it is

cancelled by tb in (41), but for numerical and asymptotic analysis, it is better to perform a
partial integration on the right-hand side to find

yC(t) = 1 − e−at + (at)bΓ(1 − b, at), (43)

which, with (42), leads to

xC(t) = N (1 − e−at + (at)bΓ(1 − b, at)) + 1. (44)

The constant a, which denotes the lowest income in the Pareto distribution, has a role of a
time constant in (44). In particular, the short time behavior of xC(t) for 0 < b < 1 is

xC(t) = c tb + O(t), (45)
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where
c = NabΓ(1 − b). (46)

For 1 < b < 2 we need a partial integration once more for a better expression;

yC(t) = 1 − e−at(1 − at

b − 1
) − (at)b

b − 1
Γ(2 − b, at) =

ab

b − 1
t − Γ(2 − b)

ab

b − 1
tb + O(t2). (47)

Note that for 0 < b < 1 the leading short time behavior is yC(t) = O(tb), which is tangential
to the y axis at t = 0, while for b > 1 (the case b � 2 can be handled similarly) the linear
dependence yC(t) = O(t) is dominant for small t.

4.2 Collected web bulletin board thread index listings.

2ch.net is one of the largest collected web bulletin boards in Japan. Each category (‘board’)
has an index listing of the titles of ‘threads’ or the web pages in the board. The titles are
ordered by “the last written thread at the top” principle; if one writes an article (‘response’)
to a thread, the title of that thread in the index listing jumps to the top instantaneously,
and the titles of other threads which were originally nearer to the top are pushed down by
1 in the listing accordingly. We can extract the exact time that a thread jumped to rank 1,
because the time of each response in a thread is recorded together with the response itself.
All these features of the 2ch.net index listing match the definition of the stochastic ranking
process, hence 2ch.net is a suitable place for a testing the applicability of the stochastic
ranking process.

We note that we can use deterministic (non-stochastic) formula such as (44) if N , the
total number of threads in the board is large. In the case of 2ch.net, N is roughly about 700
to 800, so we would expect fluctuation of a few percent, and up to that accuracy, we expect
a time evolution predicted by (44).

We also note that the time evolutions are independent of which thread one is looking
at, because the changes in the ranking are caused by the collective motion of the threads
towards the tail; popular threads jump back to the top ranking more frequently than the less
popular ones, but as long as the threads remain in the queue (i.e., before the next jump),
both a popular thread and an unpopular thread should behave in the same way, depending
only on their position in the ranking.

We collected data of the time evolution of an index listing in the 2ch.net, and performed
statistical fits of the data to (13). Fig. 1 is a plot of the threads in a board which jumped
to the rank 1 during active hours one day and stayed in the queue without jumps until
midnight. There were 12 such threads. The ranking is obviously monotone function of time
between jumps, and there are no overtaking, so that the lines do not cross in the figure.
Fig. 2 is a plot of same data as in Fig. 1, except that, for the horizontal axis the time is so
shifted for each thread that the ranking of the thread is 1 at time 0. Though each thread
starts at rank 1 on different time of the day, Fig. 2 shows that time evolutions after rank 1
are on a common curve. N is the total number of threads, which is N = 795 at the time of
observation for Fig. 2, and a and b are positive constant parameters to be determined from
the data. We performed a least square fit to (44) of nd = 117 data points shown in Fig. 2.
The best fit for the parameter set (a, b) is (a∗, b∗) = (3.3425×10−4, 0.6145) (

√
χ2/nd 
 1.8).
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12:00 24:00
time

50
ranking

Fig 1: Record of ranking changes in an afternoon for 12 threads in a board of 2ch.net. Points
from a thread are joined by line segments to guide the eye.

10

50

Fig 2: Collection of 12 threads in a board of 2ch.net, same as in Fig. 1. For each thread,
time is shifted so that the rank of the thread is 1 at time 0. The curve is xC(t) of (44) with
the best fit a = a∗ and b = b∗ to the data. Horizontal and vertical axes are the hours and
ranking, respectively.

In particular, we see a rather clear behavior close to the origin that the plotted points are
on a curve tangential to y axis, indicating xC(t) = O(tb) with b < 1 as in (45). Considering
the simplicity of our model and formula, the fits seem good, suggesting a possibility of new
application of fluid dynamics in the analysis of online rankings.

4.3 Amazon.co.jp book sales rankings.

We next turn to the ranking in the Amazon.co.jp online book sales. In this century of
expanding online retail business, the economic impact of internet retails has attracted much
attention, and there are studies using the sales rankings which appear on the webs of online
booksellers such as Amazon.com [2, 3]. We will study Amazon.co.jp, a Japanese counterpart
of Amazon.com, which seems to be not studied (and is easier to access for the authors).
Amazon.com and Amazon.co.jp are similar in basic structures of web pages for individual
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books; on a web page for a book there are the title, price and related information such as
shipping, brief description of the book, the sales ranking of the book, customer reviews and
recommendations.

We should note that Amazon.co.jp, as well as Amazon.com, does not disclose exactly how
it calculates rankings of books. In fact, there are observations [6] that Amazon.com defines
the rankings for the top sales in a rather involved way. Therefore, it would be non-trivial
and interesting if we could observe in the data behaviors similar to those of our simple model
such as (44). See [5] for economic implications of the ranking numbers in Amazon.co.jp.

According to observation, Amazon.co.jp, as well as Amazon.com, updates their rankings
once per hour, in contrast to the 2ch.net where the update procedure is instantaneous. This
implies a limit of short time observational precision of 1 hour. On the other hand, for the
long time observations, we have to consider a fact that the total number of books N is not
constant. It is said that each year about 5 × 104 books are published in Japan, or about
5.7 books per hour. Certainly not all of the books are registered on Amazon.co.jp, so the
increase of N per hour must be less than this value. Speed of ranking change decreases in the
very tail side of the listing, and these practical changes in N will affect validity of applying
(44) to the data in the very tail regime of the ranking. This gives a practical limit to long
time analysis. Fortunately, at ranking as far down as 6.5 × 105, we still observe about 200
ranking change per hour, which makes an increase by 5.7 books negligible, so we expect a
chance of applicability of our theory for long time data.

We will now summarize our results. The plotted 77 points in Fig. 3 show the result of
our observation of a Japanese book rankings data, taken between the end of May, 2007 and
mid August, 2007. As seen in the figure, the ranking number falls very rapidly near the top
position (about 200 thousands in 5 days). The solid curve is a least square fit of these points
to (44). Amazon.co.jp announces the total number of Japanese books in their list, which is
a few times 106, but we suspect that this number includes a large number of books which
are registered but never sell (so that we should discard in applying our theory). Therefore
in addition to a and b in (44) we include N as a parameter to be fit from the data. Also,
Amazon does not disclose the exact point of sales of each book, unlike 2ch.net where the
exact jump time of a thread is recorded, so that the jump time to rank 1 of a book is also a
parameter. The best fit for the parameter set (N, a, b) is:

(N∗, a∗, b∗) = (8.57 × 105, 3.939 × 10−4, 0.6312), (
√

χ2/nd 
 1.4 × 104).

Incidentally, we note in Fig. 3 a small jump at about 300 hours. We suspect this as a
result of inventory control such as unregistering books out of print. Obviously, these controls
need man-power, so that they appear only occasionally, making it a kind of unknown time
dependent external source for our analysis.

All in all, we think it an impressive discovery that a simple formula as (44) could explain
the data for more than 2 months. Our way of extracting basic sociological parameters such
as the Pareto exponent b from the ranking data on the web has advantages over previous
methods such as in [3], in that because the time development of the ranking of a book
is a result of sales of as large number of books as O(N), the book moves on the ranking
queue in a deterministic way though each sale is a stochastic process. The fluctuations of
sales (randomness about who buys what and when) are suppressed through a law-of-large-
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Fig 3: A long time sequence of data from Amazon.co.jp. The solid curve is a theoretical fit.
Horizontal and vertical axes are the hours and ranking, respectively.

numbers type mechanism [4]. By looking at the time development of the ranking of a single
book, we are in fact looking at the total sales of the books on the tail side of the book.

The theory of ‘long-tail economy’ says [1] that each product might sell only a little, but
because of the overwhelming abundance in the species of the products the total sales will
be of economic significance: It is not any specific single book but the total of books on the
long-tail that matters. Our analysis on accumulated effect of products each with random
and small sales, is particularly suitable in analyzing the new and rapidly expanding economic
possibility of online retails, and moreover, is natural from the long-tail philosophy point of
view.

Among the parameters to be fit in the Pareto distribution there is an exponent b which is
of importance in the studies of economy. For example, in the case of distribution of incomes,
which is usually quantitatively analyzed by the Pareto distribution, small b means that a
few people of high incomes hold most of the wealth (the so called ‘20–80 law’ is a nickname
for the Pareto distribution with b = 1), while for large b the society is more equal. In the
case of ranking of online booksellers, large b means that there are many books (books in
the ‘long-tail’ [1] regime), each of which does not sell much but the total sales of which is
significant, further implying strong impacts of online retails to economy [3, 2], while small b
favors dominance of traditional business model of ‘greatest hits’. Our studies on the 2ch.net
bulletin board and the Amazon.co.jp online bookseller both consistently give the Pareto
exponent b 
 0.6. Existing studies on online booksellers [3, 2] adopt the value of b = 1.2 and
b = 1.148, respectively. These references also quote values from other studies, most of which
satisfy b > 1. Note that [6] discovers, apparently based on extensive observations, that in
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the long-tail regime the sales are worse than in the head and intermediate regime, and gives
the Pareto exponent b = 0.4 in the long-tail regime. Our method gives the total effect of
intermediate and long-tails, so our value b = 0.6 could be more or less consistent with the
observation of [6].

A Proof of equivalence of (10) and (4).

Here we prove that, if supi fi < ∞, (10) and (4) are equivalent, under the equations (1) (7)
(2) (3) (5), with positive constants fi, ρi, i = 1, 2, · · ·. (The extra condition on boundedness
of fi is of course irrelevant for the finite component cases.)

First assume (10). Then with (9) we have v(0, t) =
∑

i

fi ρi. On the other hand, inte-

grating (1) by y from 0 to 1 and using (10) and (3) we have v(0, t) ui(0, t) = fi ρi. The two
equations imply (4).

Next assume (4) and let

−→
U = (U1, U2, · · ·); Ui(t) =

∫ 1

0

ui(z, t) dz, i = 1, 2, · · · . (48)

Then (9) implies

v(0, t) =
∑

j

fj Uj(t). (49)

Integrating (1) by y from 0 to 1, and using (3) (4) (49), we have

d
−→
U

dt
(t) = (A

−→
U )(t), t � 0, (50)

with

(A
−→
U )i(t) =

fiρi∑

j

fjρj

∑

j

fjUj(t) − fiUi(t), i = 1, 2, 3, · · · , t � 0. (51)

The definition (5) implies Ui(0) = ρi, hence Ui(t) = ρi, t � 0, is a solution, implying (10). To

prove that this is a unique solution, let
−→
U be a solution of (50) with

−→
U (0) = −→ρ := (ρ1, ρ2, · · ·).

Then
d (

−→
U −−→

ρ)

dt
= A (

−→
U −−→ρ ), hence

∑

i

|Ui(t) − ρi| �
∫ t

0

∑

i,j

|Aij ||Uj(s) − ρj| ds.

Note that (51) implies Aij =
fiρifj∑

k fkρk

− δijfi, from which we have, noting the assumption

supi fi < ∞,
∑

i

|Ui(t) − ρi| �
∫ t

0

2
∑

i

fi|Ui(s) − ρi| ds

� 2 sup
i

fi

∫ t

0

∑

i

|Ui(s) − ρi| ds.
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Gronwall’s inequality implies
∑

i

|Ui(t)− ρi| = 0, t � 0, hence Ui(t) = ρi, i = 1, 2, · · ·, t � 0,

is the unique solution to (50). This proves (10).
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