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ABSTRACT

We prove that loop-erased random walks on the finite pre-Sierpiński gaskets can be extended to a
loop-erased random walk on the infinite pre-Sierpiński gasket by using the ‘erasing-larger-loops-
first’ method, and obtain the asymptotic behavior of the walk as the number of steps increases,
in particular, the displacement exponent and a law of the iterated logarithm.
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1 Introduction

Loop-erased random walk (LERW) is a process obtained by erasing loops from a simple random
walk in chronological order. It was first introduced on Zd by G. Lawler ([10]) with the hope that it
would give some perspective to the study of the self-avoiding walk (SAW). Although it turned out
that LERW and SAW are in different universality classes, LERW has been attracting attention,
in particular, because of the close relation to the uniform spanning tree. Two natural questions
concerning the LERW are the existence of the scaling limit and the asymptotic behavior as the
number of the steps tends to infinity. On Zd, the existence of the scaling limit has been proved for
all d and the asymptotic behavior of the walk has been studied in terms of the growth exponent
(expected to be the reciprocal of the displacement exponent). For the scaling limit of LERW on
Zd, see, for example, [14] and [15] for d = 2, [9] for d = 3, [11] and [12] for d = 4. For the growth
exponents for LERW on Zd, see, for example, [8], [16] and [13] for d = 2, [18] for d = 3, [11] and
[12] for d = 4.

In this paper, we consider LERW on the pre-Sierpiński gasket and prove the following Theo-
rems 1–3.

Theorem 1 Loop-erased random walks on the finite pre-Sierpiński gaskets can be extended to a
loop-erased random walk X on the infinite pre-Sierpiński gasket (the precise definition of X and
a more precise statement are given in Section 5).
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Let λ = (20 +
√
205)/15 and ν = log 2/ log λ = 0.8375 . . ..

Theorem 2 For any s > 0, there exist positive constants C1(s) and C2(s) such that for any
n ∈ N,

C1(s)n
sν 5 E[|X(n)|s] 5 C2(s)n

sν ,

where X(n) denotes the location of the LERW on the infinite pre-Sierpiński gasket starting at the
origin after n steps and | · | the Euclidean distance.

ν is called the displacement exponent. We show also that the growth exponent is equal to 1/ν
(Proposition 15).

Theorem 3 There are non-random positive constants C3 and C4 such that

C3 5 lim
n→∞

|X(n)|
ψ(n)

5 C4, a.s.,

where ψ(n) = nν(log log n)1−ν .

Our main tool for the proofs of the above results is the ‘erasing-larger-loops-first’ (ELLF)
method, which was introduced to study the scaling limit, that is, the limit as the edge length
tends to 0. The scaling limit for LERW on the Sierpiński gasket was obtained by two groups
independently, by using different methods. For the ‘standard’ LERW on general graphs, the
uniform spanning tree proves to be a powerful tool, which is used in [17]. By ‘standard’, we mean
the loops are erased chronologically from a simple random walk as first introduced by G. Lawler.
On the other hand, [3] constructed a LERW on the pre-Sierpiński gasket by ELLF, that is, by
erasing loops in descending order of size of loops and proved that the resulting LERW has the
same distribution as the ‘standard’ LERW. Furthermore, in [4], it is proved that ELLF works
not only for simple random walks, but also for other kinds of random walks on some fractals, in
particular, for self-repelling walks on the pre-Sierpiński gasket introduced in [2]. An important
reason for this flexibility is that the ELLF method is based on self-similarity of the Sierpiński
gasket.

Another advantage of the ELLF method is that it facilitates the extension of LERW to the
infinite pre-Sierpiński gasket by providing a natural definition of two series of probability measures
on sets of loopless paths. The extension is not trivial, for the simple random walk on the infinite
pre-Sierpiński gasket is recurrent. The exact value of the displacement exponent has been deduced
by a scaling argument ([1]). As for the proof of the existence, the authors erroneously wrote in [3]
that Theorem 2 has been proved in [17], however, [17] deals with the scaling limit, not LERW on
the infinite pre-Sierpiński gasket, and proves the short-time behavior of the limit process X(t):

Theorem 4 (Theorem 7.10 in [17]) For any p > 0, there exist constants C5(p), C6(p) > 0 such
that for all t ∈ [0, 1],

C5(p) t
pν 5 E[|X(t)|p] 5 C6(p) t

pν ,

where |X(t)| denotes the Euclidean distance from the starting point at time t and ν = log 2/ log λ,
λ = (20 +

√
205)/15.

It is expected that the same exponent governs the long-time behavior of the walk, but no
direct proof has been given. In order to know the displacement exponent, one has to look into
how the scaled number of steps converges as the number of steps tends to infinity, not only the
limit distribution. Thus, the author corrects her error and proves Theorem 2 in this paper by
using the ELLF method.

The structure of the paper is as follows. In Section 2, we fix notation and in Section 3, we recall
the ELLF method of loop-erasing. In Section 4 we establish some results on the asymptotics of
the exit times from a series of triangles, which are used in later sections. In Section 5 we extend
the walk to the infinite pre-Sierpiński gasket and prove Theorem 1. Finally, in Section 6 and
Section 7, we prove Theorems 2 and 3, respectively.
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2 Random walk on the pre-Sierpiński gaskets

2.1 The pre-Sierpiński gaskets

Let us recall the definition of the pre-Sierpiński gasket: let O = (0, 0), a0 = (12 ,
√
3
2 ), b0 = (1, 0) ,

aN = 2Na0 and bN = 2Nb0 for N ∈ N. Let F ′
0 be the graph that consists of the three vertices and

three edges of △Oa0b0 and define a recursive sequence of graphs {F ′
N}∞N=0 by

F ′
N+1 = F ′

N ∪ (F ′
N + aN ) ∪ (F ′

N + bN ), N ∈ Z+ = {0, 1, 2, . . .} ,

where A+ a = {x+ a : x ∈ A} and kA = {kx : x ∈ A}. F ′
0, F

′
1 and F ′

2 are shown in Fig. 1.

b1

a0

a1

b0OO b0

a0

F ′
1

b1

a0

a1

b0O
F ′
2

b2

a2

F ′
0

Fig 1: F ′
0, F

′
1 and F ′

2.

Finally, we let F ′R
N denote the reflection of F ′

N with respect to the y-axis, and F0 =

∞∪
N=1

(F ′
N ∪

F ′R
N ); the graph F0 is called the (infinite) pre-Sierpiński gasket. F0 is shown in Fig. 2.

O

F0

Fig 2: The pre-Sierpiński gasket F0.

Furthermore, by letting G0 and E0 denote the set of vertices and the set of edges of F0,
respectively, we see that, for each N ∈ Z+, FN = 2NF0 can be regarded as a coarse graph with
vertices GN = {2Nx : x ∈ G0} and edges EN = {2N (x, y) : (x, y) ∈ E0}. We call a (closed and
filled) triangle which is a translation of △OaMbM and whose vertices are in GM a 2M–triangle.
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2.2 Paths on the pre-Sierpiński gaskets

Define a set of finite paths on F0 starting at O by

W = { w = (w(0), w(1), · · · , w(n)) : w(0) = O, (w(i− 1), w(i)) ∈ E0, 1 5 i 5 n, n ∈ Z+ }.

This gives the natural definition for the length ℓ of a path w = (w(0), w(1), · · · , w(n)) ∈ W ;
namely, ℓ(w) = n.

For a path w ∈W and A ⊂ G0, we define the hitting time of A by

TA(w) = inf{j = 0 : w(j) ∈ A},

where we set inf ∅ = ∞. By taking w ∈ W and M ∈ Z+, we will define a recursive sequence
{TM

i (w)}mi=0 of hitting times of GM as follows: Let TM
0 (w) = 0, and for i = 1, let

TM
i (w) = inf{j > TM

i−1(w) : w(j) ∈ GM \ {w(TM
i−1(w))}};

here we takem to be the smallest integer such that TM
m+1(w) = ∞. Then TM

i (w) can be interpreted
as being the time (steps) taken for the path w to hit vertices in GM for the (i+1)-st time, under
the condition that if w hits the same vertex in GM more than once in a row, we count it only
once.

Now, we consider the following two sequences of subsets of W : for each N ∈ Z+, let

WN = {w = (w(0), w(1), · · · , w(n)) ∈W : w(TN
1 (w)) = aN , n = TN

1 (w)}

be the set of paths from O to aN that do not hit any other vertices in GN on the way and let

VN = {w = (w(0), w(1), · · · , w(n)) ∈W : w(TN
1 (w)) = bN , w(T

N
2 (w)) = aN , n = TN

2 (w)}

be the set of paths from O to aN that hit bN ‘once’ on the way (subject to the counting rule
explained above).

Then, for a path w ∈W and each M ∈ Z+, we define the coarse-graining map QM by

(QMw)(i) = w(TM
i (w)), for i = 0, 1, 2, . . . ,m,

where m is the smallest integer such that TM
m+1(w) = ∞ as above. Thus,

QMw = (w(TM
0 (w)), w(TM

1 (w)), . . . , w(TM
m (w)))

is a path on a coarser graph FM . For w ∈ WN ∪ VN and M 5 N , the end point of the coarse-
grained path is w(TM

m (w)) = aN , and if we write (2−MQMw)(i) = 2−Mw(TM
i (w)), then 2−MQMw

is a path in WN−M ∪ VN−M and ℓ(2−MQMw) = m. In the following, we often write w(TM
i ) for

w(TM
i (w)).
Define a family of probability measures PN on WN , N ∈ N, by assigning each w ∈WN ,

PN [w] =

(
1

4

)ℓ(w)−1

.

(WN , PN ) defines a family of fixed-end random walks ZN on F0 such that

ZN (w)(i) = w(i), i = 0, · · · , ℓ(w), w ∈WN . (2.1)

This is a simple random walk on F0 starting at O and stopped at the first hitting time of aN
conditioned on the event that the walk does not hit any vertices in GN \ {O} on the way. The
factor (1/4)−1 comes from this conditioning.
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Define another family of probability measures P ′
N on VN , N ∈ N, by assigning each w ∈ VN ,

P ′
N [w] =

(
1

4

)ℓ(w)−2

.

(VN , P
′
N ) defines a family of fixed-end random walks Z ′

N on F0 such that

Z ′
N (w)(i) = w(i), i = 0, · · · , ℓ(w), w ∈ VN . (2.2)

This is a simple random walk on F0 started at O and stopped at the first hitting time of aN
conditioned on the event that the walk hits bN ‘once’ on the way.

Note that a coarse grained simple random walk is again a simple random walk on a coarse
graph, namely, if M < N , then the distributions of 2−MQMZN and 2−MQMZ

′
N are equal to

PN−M and P ′
N−M , respectively.

3 Loop erasure by the erasing-larger-loops-first rule

For (w(0), w(1), · · · , w(n)) ∈ WN ∪ VN , if there are c ∈ G0, i and j, 0 5 i < j 5 n such that
w(i) = w(j) = c and w(k) ̸= c for any i < k < j, we call the path segment [w(i), w(i+1), . . . , w(j)]
a loop formed at c and define its diameter by d = maxi5k1<k25j |w(k1) − w(k2)|, where | · |
denotes the Euclidean distance. Note that a loop can be a part of another larger loop formed at
some other vertex. Suppose that for a loop [w(i), w(i+1), · · · , w(i+ i0)] there exists an M ′ ∈ Z+

such that
w(i) = w(i+ i0) ∈ GM ′ , d = 2M

′
,

where d is the diameter of the loop. Let M be the maximum of such M ′ and call the loop a
2M -scale loop. By definition, the paths in WN ∪ VN do not have any 2N -scale loops. For each
N ∈ Z+, let ΓN be the set of loopless paths from O to aN :

ΓN = { (w(0), w(1), · · · , w(n)) ∈WN ∪ VN : w(i) ̸= w(j), 0 5 i < j 5 n, n ∈ N }.

Note that any loopless path in ΓN is confined in △OaNbN .
We now describe the loop-erasing procedure in a more organized manner than [3]. We start

by erasing loops from paths in W1 ∪ V1.

Loop erasure for W1 ∪ V1

(i) Erase all the loops formed at O;

(ii) Progress one step forward along the path, and erase all the loops at the new position;

(iii) Iterate this process, taking another step forward along the path and erasing the loops there,
until reaching a1.

Let Lw denote the resulting path, where L : W1 ∪ V1 → Γ1 is the loop-erasing operator. Fig.
3 shows all the possible loopless paths from O to a1 on F0. Here only the parts in △Oa1b1 are
shown, for it is impossible for any path to go into other triangles without making a loop. Note
that w ∈ W1 implies Lw ∈ W1 ∩ Γ1, but that w ∈ V1 can result in Lw ∈ W1 ∩ Γ1, with b1 being
erased together with a loop. So far, our loop-erasing procedure is the same as the chronological
method defined for paths on Zd in [10].

For a general N , we erase loops from the largest-scale loops down, repeatedly applying the
loop-erasing procedure for W1 ∪ V1. To describe the procedure, we introduce a ‘step-based’
decomposition of a path based on the self-similarity and the symmetries of the pre-Sierpiński
gaskets. Assume w ∈ WN ∪ VN and 0 5 M < N . Note that the pair of adjacent 2M–triangles
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a1
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7 w∗
8 w∗

9 w∗
10

Fig 3: The loopless paths from O to a1 on F0.

including (QMw)(i− 1), (QMw)(i) and (QMw)(i+ 1) is similar to F0 ∩ (△OaMbM ∪△OaRMbRM ),
where △OaRMbRM is the reflection of △OaMbM with regard to the y–axis. This leads to a unique
decomposition:

(w̃;w1, · · · , wℓ(w̃)), w̃ ∈WN−M ∪ VN−M , wi ∈WM , i = 1, · · · , ℓ(w̃) (3.1)

such that w̃ = 2−MQMw and that the path segment (w(TM
i−1(w)), w(T

M
i−1(w)+1), · · · , w(TM

i (w)))
of w is identified with wi ∈ WM by appropriate rotation, translation and reflection so that
w(TM

i−1(w)) is identified with O and w(TM
i (w)) with aM . Note that we may also need reflection

acting only one of the triangle, to be more specific, after identifying the pair of 2M–triangles with
△OaMbM ∪ △OaRMbRM , we may need to reflect the part of the path in △OaMbM with regard to
y = x/

√
3 to obtain a path in WM ∪ VM . We will use this kind of identification throughout the

paper. We illustrate a simple example of the decomposition for N = 2 and M = 1 in Fig. 4.

Erasure of the largest-scale loops

(1) Decompose a path w ∈ WN ∪ VN as (w̃;w1, · · · , wℓ(w̃)), w̃ = 2−(N−1)QN−1w ∈ W1 ∪ V1,
wi ∈WN−1, i = 1, · · · , ℓ(w̃) as in (3.1) with M = N − 1. Fig. 5(a) shows the original w and
Fig. 5(b) shows QN−1w.

(2) Erase all the loops from w̃ by following the loop-erasure for W1 ∪ V1 to obtain Lw̃ ∈ Γ1.
Denote the coarse, loopless path 2(N−1)Lw̃ on FN−1 by Q̂N−1w (Fig. 5(c)). To be more
precise, Q̂N−1w can be expressed as

Q̂N−1w = (w(TN−1
0 ), w(TN−1

s1 ), · · · , w(TN−1
sn )),

where s0 = 0 and for i = 1,

si = sup{ j : w(TN−1
j ) = w(TN−1

sj−1+1) }.

(3) Restore the original fine structures to the remaining parts as shown in Fig. 5(d) to obtain a
path w′ ∈WN ∪ VN . To be more precise, for each step i of Q̂N−1w, between w(T

N−1
si ) and

w(TN−1
si+1

), insert the path segment wsi+1 = (w(TN−1
si ), w(TN−1

si + 1), · · · , w(TN−1
si+1 )) chosen

from the original decomposition in Step (1). Note that QN−1w
′ = Q̂N−1w holds.

At this stage all the 2N−1–scale loops have been erased. We repeat Procedure (1)–(3) within
each 2N−1–triangle to erase all the 2N−2–scale loops, and then within each 2N−2–triangle, and so
on, until there remain no loops.
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Fig 4: w, w̃, w1, w2, w3.

To give a more precise description of the procedure, we prepare another kind of decomposi-
tion, a ‘triangle-based’ decomposition. For w ∈ WN and 0 5 M 5 N , we define the sequence
(∆1, . . . ,∆k) of the 2M–triangles w ‘passes through’, and their exit times {T ex,M

i (w)}ki=1 as a

subsequence of {TM
i (w)}mi=1 as follows: Let T ex,M

0 (w) = 0. There is a unique 2M–triangle that
contains w(TM

0 ) and w(TM
1 ), which we denote by ∆1. For i = 1, define

J(i) = min{j = 0 : j < m, TM
j (w) > T ex,M

i−1 (w), w(TM
j+1(w)) ̸∈ ∆i},

if the minimum exists, otherwise J(i) = m. Then define T ex,M
i = T ex,M

i (w) = TM
J(i)(w), and if

J(i) < m let ∆i+1 be the unique 2M–triangle that contains both w(T ex,M
i ) and w(TM

J(i)+1). By

definition, we see that ∆i ∩∆i+1 is a one-point set {w(T ex,M
i )}, for i = 1, . . . , k − 1. We denote

the sequence of these triangles by σM (w) = (∆1, . . . ,∆k), and call it the 2M–skeleton of w. We
call the sequence {T ex,M

i (w)}ki=0 exit times from the triangles in the skeleton. For each i, there

is an n = n(i) such that T ex,M
i−1 (w) = TM

n (w). If T ex,M
i (w) = TM

n+1(w), we say that ∆i ∈ σM (w) is

Type 1, and if T ex,M
i (w) = TM

n+2(w), Type 2. For w ∈WN ∪VN and M < N , if QMw is similar
to a path in ΓN−M , namely, 2−MQMw ∈ ΓN−M , then its 2M–skeleton is a collection of distinct
2M–triangles and each of them is either Type 1 or Type 2.

Assume w ∈WN ∪ VN and M 5 N . For each ∆i in σM (w), the path segment of w in ∆i is
defined by

w|∆i = [w(n), T ex,M
i−1 (w) 5 n 5 T ex,M

i (w)]. (3.2)

Note that the definition of T ex,M
i (w) allows a path segment w|∆i to leak into the neighboring 2M–

triangles. If QMw is similar to a path in ΓN−M , then w|∆i ∈ WM or w|∆i ∈ VM (identification
implied), according to the type of ∆i, where the entrance to ∆i is identified with O and the
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Fig 5: The loop-erasing procedure: (a) w, (b) QN−1w, (c) Q̂N−1w, (d) fine structures restored.

exit with aM . This means that each w such that QMw is similar to a path in ΓN−M can be
decomposed uniquely to

(σM (w); w|∆1 , · · · , w|∆k
), w|∆i ∈WM ∪ VM , i = 1, · · · , k. (3.3)

Induction step of loop erasure
Let w ∈ WN ∪ VN and 1 5 M < N . Suppose that all of the 2N−1 to 2N−M–scale loops have

been erased from w, and denote the path obtained at this stage by w′ ∈ WN ∪ VN . Note that
QN−Mw

′ is similar to a path in ΓM .

1) Decompose w′ to obtain (σN−M (w′); w′
1, · · ·w′

k), w
′
i ∈WN−M ∪ VN−M as given in (3.3).

2) From each w′
i, erase 2N−M−1–scale loops (largest-scale loops) according to the base step

procedure (1)–(3) above to obtain w̃′
i ∈WN−M ∪ VN−M .

3) Assemble (σN−M (w′); w̃′
1, · · · , w̃′

k) to obtain w′′ ∈WN ∪ VN , which is determined uniquely.
w′′ has no 2N−1 to 2N−M−1–scale loops.

2

We repeat 1)–3) until we have no loops, and let Lw ∈ ΓN denote the resulting loopless
path. In this way, the loop erasing operator L, first defined for W1 ∪ V1, has been extended to
L :

∪∞
N=1(WN ∪ VN ) →

∪∞
N=1 ΓN with L(WN ∪ VN ) = ΓN . Note that the operation described

above is essentially a repetition of loop-erasing for W1 ∪ V1.
The operator L induces measures P̂N = PN ◦L−1 and P̂ ′

N = P ′
N ◦L−1, which satisfy P̂N [ΓN ] =

P̂ ′
N [ΓN ] = 1. For w∗

1, · · · , w∗
10 shown in Fig. 3, let

pi = P̂1[w
∗
i ] = P1[w : Lw = w∗

i ], qi = P̂ ′
1[w

∗
i ] = P ′

1[w : Lw = w∗
i ].
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A direct calculation gives ([3]):

p1 = 1/2, p2 = p3 = p7 = 2/15, p4 = p5 = p6 = 1/30, p8 = p9 = p10 = 0, (3.4)

q1 = 1/9, q2 = q3 = 11/90, q4 = q5 = q6 = 2/45, q7 = 8/45, q8 = 2/9, q9 = q10 = 1/18. (3.5)

P̂N and P̂ ′
N define two kinds of walks YN = LZN and Y ′

N = LZ ′
N on F0 ∩△OaNbN obtained

by erasing loops from the simple random walks ZN and Z ′
N , respectively.

For w ∈ WN ∪ VN , we defined Q̂N−1w in Step (2) for the erasure of the largest-scale loops.
For later use we define Q̂N−Kw on FN−K for all K = 0, 1, · · · , N . Repeat the induction step
1)–3) K times to have down to 2N−K–scale loops erased and denote the resulting path w′. Let
Q̂N−Kw = QN−Kw

′, namely, the coarse path before restoring fine structures. In particular,
Q̂Nw = QNw and Q̂0w = Lw. By construction, the distributions of 2−(N−K)Q̂N−KZN and
2−(N−K)Q̂N−KZ

′
N equal P̂K and P̂ ′

K , respectively.
To compare the LERW defined here and the ‘standard’ LERW studied in [17], let us consider

a simple random walk on the finite graph F ′
N = F0 ∩ △OaNbN , starting at O and stopped at

the first hitting time of aN . Let us denote this random walk by X̃N . X̃N may visit O and bN
as many times as it likes, thus it may have 2N–scale loops. If we coarse-grain the walk to obtain
QNX̃N and erase 2N–scale loops chronologically from it, we obtain a loopless walk Q̂NX̃N , which
is either (O, aN ) or (O, bN , aN ). By direct calculation we have

P̃ [Q̂NX̃N = (O, aN )] =
2

3
, P̃ [Q̂NX̃N = (O, bN , aN )] =

1

3
,

where P̃ denotes the law of the simple random walk defined above. Random walks ZN and Z ′
N

considered in this paper can leak into neighboring 2N–triangles, which parts are considered to be
folded back into △OaNbN for X̃N . Thus P̃ [ · | Q̂NX̃N = (O, aN )] = PN and P̃ [ · | Q̂NX̃N =
(O, bN , aN )] = P ′

N , and therefore

P̃ ◦ L−1 =
2

3
P̂N +

1

3
P̂ ′
N ,

which equals the law of the ‘standard’ LERW.

4 Asymptotic behavior of the exit times

In this section, we look into the asymptotics for the exit times T ex,N
1 (YN ) and T ex,N

1 (Y ′
N ) as

N → ∞, which will be used in Section 6.
For w ∈ ΓN , let s1(w) and s2(w) denote the number of 20– triangles of Type 1 (the path passes

two of the vertices) and those of Type 2 (the path passes all three vertices) in σ0(w), respectively.

Note that T ex,N
1 (w) = ℓ(w) = s1(w) + 2s2(w). Define two sequences, {Φ(1)

N }N∈N and {Φ(2)
N }N∈N,

of generating functions by:

Φ
(1)
N (x, y) =

∑
w∈ΓN

P̂N (w)xs1(w)ys2(w),

Φ
(2)
N (x, y) =

∑
w∈ΓN

P̂ ′
N (w)xs1(w)ys2(w), x, y ∈ C.

For simplicity, we will write Φ(1)(x, y) and Φ(2)(x, y) for Φ
(1)
1 (x, y) and Φ

(2)
1 (x, y). A crucial

observation is that in the process of erasing loops from ZN+1, if we stop at the stage where we
have obtained Q̂1ZN+1 after erasing down to 21–scale loops, it is nothing but the procedure for
obtaining LZN from ZN , in other words, the distribution of 2−1Q̂1ZN+1 equals P̂N . The same
holds for 2−1Q̂1Z

′
N+1 and P̂ ′

N as well. This fact combined with (3.4) and (3.5) leads to the
recursion relations for the generating functions given below:

9



Proposition 5 (Proposition 3 in [3])
The above generating functions satisfy the following recursion relations for all N ∈ N :

Φ(1)(x, y) =
1

30
(15x2 + 8xy + y2 + 2x2y + 4x3),

Φ(2)(x, y) =
1

45
(5x2 + 11xy + 2y2 + 14x2y + 8x3 + 5xy2);

Φ
(i)
N+1(x, y) = Φ

(i)
N (Φ(1)(x, y),Φ(2)(x, y)), i = 1, 2.

In particular, inductively it also holds that for any N,M ∈ N,

Φ
(i)
N+M (x, y) = Φ

(i)
N (Φ

(1)
M (x, y),Φ

(2)
M (x, y)), i = 1, 2.

Define the mean matrix by

M =


∂

∂x
Φ(1)(1, 1)

∂

∂y
Φ(1)(1, 1)

∂

∂x
Φ(2)(1, 1)

∂

∂y
Φ(2)(1, 1)

 =


9

5

2

5

26

15

13

15

 . (4.1)

It is strictly positive, and the larger eigenvalue is given by λ = (20 +
√
205)/15 = 2.2878 . . .. The

following is a restatement of Proposition 9 in [3].

Proposition 6 (1) Let G
(1)
N (t) and G

(2)
N (t) be the Laplace transforms of λ−NT ex,N

1 (YN ) and

λ−NT ex,N
1 (Y ′

N ), respectively, that is,

G
(1)
N (t) = ÊN [exp(−tλ−NT ex,N

1 )],

G
(2)
N (t) = Ê′

N [exp(−tλ−NT ex,N
1 )], t ∈ C

where ÊN and Ê′
N are expectations with regard to P̂N and P̂ ′

N , respectively. Then they are
expressed in terms of the generating functions as

G
(i)
N (t) = Φ

(i)
N (e−λ−N t, e−2λ−N t) i = 1, 2. (4.2)

(2) For each i, G
(i)
N (t) converges to an entire function gi(t) uniformly on any compact set in C

as N → ∞. g1(t) and g2(t) are the unique solution to

g1(λt) = Φ(1)(g1(t), g2(t)), g2(λt) = Φ(2)(g1(t), g2(t)), g1(0) = g2(0) = 1.

(3) λ−NT ex,N
1 (YN ) and λ−NT ex,N

1 (Y ′
N ) converge in law to some integrable random variables T ∗

1

and T ∗
2 , whose Laplace transforms are given by g1 and g2, respectively, as N → ∞. T ∗

1

and T ∗
2 have strictly positive probability density functions on (0,∞). ÊN [ λ−NT ex,N

1 ] and

Ê′
N [ λ−NT ex,N

1 ] converge to the expectations of T ∗
1 and T ∗

2 as N → ∞, respectively.

Next we want to obtain the left tail behavior of the scaled exit times and begin by estimating
the Laplace transforms.

Proposition 7 There exist positive constants C4.1, C4.2 and t0 such that

exp(−C4.2s
ν) 5 G

(i)
N (s) 5 exp(−C4.1s

ν), i = 1, 2, (4.3)

for all t > t0 and N > logλ(t/t0).
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Proof. Using (4.2), we rewrite the recursion in Proposition 5 as

G
(i)
N+M (t) = Φ

(i)
M (G

(1)
N (t/λM ), G

(2)
N (t/λM )), i = 1, 2. (4.4)

From the explicit forms of Φ(i), i = 1, 2, in Proposition 5, it follows that for 0 < x, y < 1,

q1(x ∧ y)2 5 Φ(i)(x, y) 5 (x ∨ y)2, i = 1, 2,

where q1 = 1/9. Repeating this M times, we have

{q1(x ∧ y)}2M 5 Φ
(i)
M (x, y) 5 (x ∨ y)2M , i = 1, 2. (4.5)

This combined with (4.4) gives

{q1(G(1)
N (t/λM ) ∧G(2)

N (t/λM ))}2M 5 G
(i)
N+M (t) 5 {G(1)

N (t/λM ) ∨G(2)
N (t/λM )}2M . (4.6)

Fix t0 > 0 arbitrarily. Since {G(1)
N (t0)∨G(2)

N (t0)}∞N=1 and {(G(1)
N (λt0)∧G(2)

N (λt0)}∞N=1 are strictly
positive sequences and have strictly positive limits by Proposition 6 (2), there exist constants
c1, c2 ∈ (0, 1) such that

q1(G
(1)
N (λt0) ∧G(2)

N (λt0)) > c1, G
(1)
N (t0) ∨G(2)

N (t0) < c2, (4.7)

for all N ∈ N. For any t > t0, choose M ∈ Z+ such that

λM 5 t

t0
< λM+1. (4.8)

Then, the monotonicity of G
(i)
N combined with (4.6), (4.7) and (4.8) gives

c2
M

1 5 G
(i)
N+M (t) 5 c2

M

2 , i = 1, 2.

This further leads to

exp(−C4.2t
ν) 5 G

(i)
N (t) 5 exp(−C4.1t

ν), i = 1, 2

for all t > t0 and N > logλ(t/t0), where we set C4.2 = − log c1
tν0

and C4.1 = − log c2
2tν0

.

2

The following theorem plays an essential role in the proof of a law of the iterated logarithm
in Section 7.

Theorem 8 (Theorem 5.9 (ii) in [5])
If the Laplace transforms of the scaled numbers of steps satisfy (4.3), the following hold:

(1) There exist positive constants C4.3 and C4.4 such that for any positive sequence {αN}∞N=1

satisfying lim
N→∞

2N(1−ν)/ναN = ∞ and lim
N→∞

αN = 0, the following holds:

−C4.3 5 lim
N→∞

α
ν/(1−ν)
N log P̂

(i)
N [λ−NT ex,N

1 (w) 5 αN ]

5 lim
N→∞

α
ν/(1−ν)
N log P̂

(i)
N [λ−NT ex,N

1 (w) 5 αN ] 5 −C4.4, i = 1, 2.
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(2) There exist positive constants C4.5 – C4.7 such that for any ξ > 0 and N ∈ N satisfying

(2
1
ν
−1)Nξ = C4.5,

P̂
(i)
N [λ−NT ex,N

1 (w) 5 ξ ] 5 C4.6e
−C4.7ξ−ν/(1−ν)

, i = 1, 2

holds.

Theorem 8 is proved by using an exponential tauberian theorem. Theorem 9 below is a
refrasing of the tauberian theorem (Theorem 2.2) in [7] into a convenient form for our purpose.

Theorem 9 (Theorem A.10 in [5])
Let f1 and f2 be concave functions on (0,∞), such that the Legendre transforms

f∗i (ξ) = inf
s>0

(sξ − fi(s)), ξ > 0, i = 1, 2,

are non-decreasing and f∗i (ξ) > −∞ for any ξ ∈ (0,∞).
If a family of Borel probability measures {Pu, u > 0} on [0,∞) satisfies

f1(s) 5 lim
u→∞

−1

u
log

∫ ∞

0
e−usξPu[ dξ ]

5 lim
u→∞

−1

u
log

∫ ∞

0
e−usξPu[ dξ ] 5 f2(s), s > 0,

(4.9)

then

f∗1 (ξ∗(s
∗(ξ))) 5 lim

u→∞

1

u
logPu[[0, ξ]] 5 lim

u→∞

1

u
logPu[[0, ξ]] 5 f∗1 (ξ), ξ > 0

holds, where
s∗(ξ) = sup{s > 0 : sξ − f2(s) 5 f∗1 (ξ)}, ξ > 0, (4.10)

and
ξ∗(s) = inf{ξ > 0 : sξ − f∗1 (ξ) 5 f2(s)}, s > 0. (4.11)

Proof of Theorem 8.
We derive (1) from Theorem 9 for i = 1. Let

µN ([0, x]) := P̂
(1)
N [λ−NT ex,N

1 (w) 5 αNx ].

where {αN} satisfis the assumption in Theorem 8(1). Let βN = αN
−ν/(1−ν), then by assumption

{βN} is a divergent positive sequence. Since∫ ∞

0
e−βNsξµN [ dξ ] =

1

αN
G

(1)
N

(
βNs

αN

)
,

by Proposition 7 we have

1

αN
exp

(
−C4.2

(
βNs

αN

)ν)
5

∫ ∞

0
e−βNsξµN [ dξ ] 5 1

αN
exp

(
−C4.1

(
βNs

αN

)ν)
,

for N large enough. Thus

−C4.2s
ν 5 lim

N→∞

1

βN
log

∫ ∞

0
e−βNsξµN [ dξ ] 5 lim

N→∞

1

βN
log

∫ ∞

0
e−βNsξµN [ dξ ] 5 −C4.1s

ν .
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Then the assumptions for Theorem 9 hold with u = βN , Pu = µN , f2(s) = C4.2s
ν and f1(s) =

C4.1s
ν . In particular,

f∗1 (x) = −(C4.1(1− ν)1−ννν)1/(1−ν)x−ν/(1−ν),

and
f∗2 (x) = −(C4.2(1− ν)1−ννν)1/(1−ν)x−ν/(1−ν).

Since ξ∗(s
∗(x)) = Bx with B being a positive constant depending only on C4.1, C4.2 and ν,

Theorem 9 implies that

−C4.3x
−ν/(1−ν) 5 lim

N→∞

1

βN
logµN ([0, x])

5 lim
N→∞

1

βN
logµN ([0, x]) 5 −C4.4x

−ν/(1−ν), x > 0

holds for some positive constants C4.3 and C4.4. Setting x = 1, the conclusion of Theorem 8(1)
follows. The same proof holds true for i = 2.

For (2), a combination of Proposition 7 and Chebyshev’s inequality gives

P̂
(i)
N [λ−NT ex,N

1 (w) 5 ξ ] 5 e−C4.1sν+ξs,

for s > t0 and N > logλ(s/t0). The right-hand side minimizes at s∗ =

(
C4.1ν

ξ

)1/(1−ν)

, and

N > logλ(s∗/t0) if (2
1
ν
−1)Nξ = C4.1ν

t1−ν
0

.

2

5 Extension to the infinite pre-Sierpiński gasket

In this section, we show that the loop-erased random walks defined in Section 3 can be extended
to a loop-erased random walk on the infinite pre-Sierpiński gasket. For this purpose, we need
walks from O to bN as well as those from O to aN . For each N ∈ Z+, let

W b
N = {w = (w(0), w(1), · · · , w(n)) ∈W : w(TN

1 (w)) = bN , n = TN
1 (w)},

V b
N = {w = (w(0), w(1), · · · , w(n)) ∈W : w(TN

1 (w)) = aN , w(T
N
2 (w)) = bN , n = TN

2 (w)}.

and probability measures P
(2)
N on W b

N and P
(4)
N on V b

N by

P
(2)
N [w] =

(
1

4

)ℓ(w)−1

, w ∈W b
N ,

P
(4)
N [w] =

(
1

4

)ℓ(w)−2

, w ∈ V b
N .

Let UN = WN ∪ VN ∪W b
N ∪ V b

N and extend the loop-erasing operator L so that it is defined on∪∞
N=1 UN . Let P

(1)
N = PN , P

(3)
N = P ′

N and P̂
(i)
N = P

(i)
N ◦ L−1, for i = 1, 2, 3, 4. In the rest of the

paper, we will use the same notation ΓN for loopless paths in UN . Define a probability measure
P rw
N on UN by

P rw
N =

11

28
(P

(1)
N + P

(2)
N ) +

3

28
(P

(3)
N + P

(4)
N ), (5.1)

and denote by Z̃N the conditioned simple random walk on F0 defined by P rw
N and let

P̃N = P rw
N ◦ L−1. (5.2)
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Then

P̃N =
11

28
(P̂

(1)
N + P̂

(2)
N ) +

3

28
(P̂

(3)
N + P̂

(4)
N ), (5.3)

and P̃N [ΓN ] = 1.
Let

Ω = { ω = (ω0, ω1, ω2, · · ·) : ω0 ∈ Γ0, ωN ∈ ΓN , ωN |N−1 = ωN−1, N ∈ N },

where ωN |N−1 denotes the path ωN stopped at T ex,N−1
1 (ωN ). Note that Ω ∈

⊗
N∈Z+

2ΓN , which

is the product σ–algebra on
∏

N∈Z+

ΓN . Let B be the σ-algebra on Ω generated by cylinder sets.

Define the projection onto the first N + 1 elements by

πNω = (ω0, ω1, . . . , ωN )

and a probability measure P prod
N on πNΩ by

P prod
N [(ω0, ω1, . . . , ωN )] = P̃N [ωN ]. (5.4)

Proposition 10 The sequence {P prod
N }, N ∈ Z+ defined in (5.4) satisfies:

P prod
N [(ω0, ω1, . . . , ωN )] =

∑
ω′

P prod
N+1[(ω0, ω1, . . . , ωN , ω

′)], (5.5)

where the sum is taken over all possible ω′ ∈ ΓN+1 such that ω′|N = ωN .

Proof. Assume u ∈ UN+1. Let ∆0 = △Oa0b0 and u1 := (2−N Q̂Nu)|∆0 be the path segment of
2−N Q̂Nu in ∆0. Then u1 ∈ Γ0 = {(O, a0), (O, b0), (O, b0, a0), (O, a0, b0)}. Let v∗1 = (O, a0), v

∗
2 =

(O, b0), v
∗
3 = (O, b0, a0), v

∗
4 = (O, a0, b0). Recall that in Step (2) of erasing the largest-scale loops

from u, we obtain Q̂Nu, which satisfies 2−N Q̂Nu ∈ Γ1 and whose law under P
(i)
N+1 is equal to P̂

(i)
1 .

In particular, P
(i)
N+1[ u1 = v∗j ] = P̂

(i)
1 [ v ∈ Γ1 : v|∆0 = v∗j ]. Let ∆ = △OaNbN . For ŵ ∈ ΓN , we

classify the event {u ∈ UN+1 : Lu|∆ = ŵ} by u1. For i = 1, 3,

P̂
(i)
N+1[ w ∈ ΓN+1 : w|∆ = ŵ ] = P

(i)
N+1[ u ∈ UN+1 : Lu|∆ = ŵ ]

=

4∑
j=1

P
(i)
N+1[ Lu|∆ = ŵ | u1 = v∗j ] P

(i)
N+1[ u1 = v∗j ]

=
4∑

j=1

P̂
(j)
N [ŵ] P̂

(i)
1 [ v ∈ Γ1 : v|∆0 = v∗j ]

= P̂
(1)
N [ŵ] P̂

(i)
1 [{w∗

1, w
∗
3}] + P̂

(2)
N [ŵ] P̂

(i)
1 [{w∗

5, w
∗
7, w

∗
8, w

∗
9}]

+ P̂
(3)
N [ŵ] P̂

(i)
1 [{w∗

2, w
∗
4}] + P̂

(4)
N [ŵ] P̂

(i)
1 [{w∗

6, w
∗
10}],

where in the third equality we used the fact that under the condition that u1 = v∗j , the distribution

of Lu|∆ is equal to P̂
(j)
N . Thus, by (3.4) and (3.5) we have

P̂
(1)
N+1[ w ∈ ΓN+1 : w|∆ = ŵ ] =

19

30
P̂

(1)
N [ŵ] +

1

6
P̂

(2)
N [ŵ] +

1

6
P̂

(3)
N [ŵ] +

1

30
P̂

(4)
N [ŵ],

P̂
(3)
N+1[ w ∈ ΓN+1 : w|∆ = ŵ ] =

7

30
P̂

(1)
N [ŵ] +

1

2
P̂

(2)
N [ŵ] +

1

6
P̂

(3)
N [ŵ] +

1

10
P̂

(4)
N [ŵ].

For i = 2, let ŵR and v∗Ri be the paths obtained by reflection of ŵ and v∗i with regard to the
line y = x/

√
3, respectively. Then using v∗R1 = v∗2 and v∗R3 = v∗4, we have
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P̂
(2)
N+1[ w ∈ ΓN+1 : w|∆ = ŵ ] = P

(2)
N+1[ u ∈ UN+1 : Lu|∆ = ŵ ]

=

4∑
j=1

P
(2)
N+1[ Lu|∆ = ŵ | u1 = v∗j ] P

(2)
N+1[ u1 = v∗j ]

=

4∑
j=1

P
(1)
N+1[ Lu|∆ = ŵR | u1 = v∗Rj ] P

(1)
N+1[ u1 = v∗Rj ]

= P̂
(2)
N [ŵR] P̂

(1)
1 [ v ∈ Γ1 : v|∆0 = v∗2 ] + P̂

(1)
N [ŵR] P̂

(1)
1 [ v ∈ Γ1 : v|∆0 = v∗1 ]

+ P̂
(4)
N [ŵR] P̂

(1)
1 [ v ∈ Γ1 : v|∆0 = v∗4 ] + P̂

(3)
N [ŵR] P̂

(1)
1 [ v ∈ Γ1 : v|∆0 = v∗3 ]

= P̂
(1)
N [ŵ] P̂

(i)
1 [{w∗

5, w
∗
7, w

∗
8, w

∗
9}] + P̂

(2)
N [ŵ] P̂

(i)
1 [{w∗

1, w
∗
3}]

+ P̂
(3)
N [ŵ] P̂

(i)
1 [{w∗

6, w
∗
10}] + P̂

(4)
N [ŵ] P̂

(i)
1 [{w∗

2, w
∗
4}].

Therefore,

P̂
(2)
N+1[ w ∈ ΓN+1 : w|∆ = ŵ ] =

1

6
P̂

(1)
N [ŵ] +

19

30
P̂

(2)
N [ŵ] +

1

30
P̂

(3)
N [ŵ] +

1

6
P̂

(4)
N [ŵ],

Similarly, we have

P̂
(4)
N+1[ w ∈ ΓN+1 : w|∆ = ŵ ] =

1

2
P̂

(1)
N [ŵ] +

7

30
P̂

(2)
N [ŵ] +

1

10
P̂

(3)
N [ŵ] +

1

6
P̂

(4)
N [ŵ].

We want a probability vector α = (α1, α2, α3, α4), i.e., αi = 0, i = 1, 2, 3, 4 with
∑4

i=1 αi = 1,
that satisfies

4∑
i=1

αiP̂
(i)
N+1[w|∆ = ŵ] =

4∑
i=1

αiP̂
(i)
N [ŵ]

for every ŵ ∈ ΓN , N ∈ Z+. This equation can be rewritten in a simple manner as

α = αP,

where

P =
1

30


19 5 5 1
5 19 1 5
7 15 5 3
15 7 3 5

 , (5.6)

and

(α1, α2, α3, α4) =

(
11

28
,
11

28
,
3

28
,
3

28

)
is the unique choice of the probability vector satisfying the above equation. 2

Proposition 10 gives the consistency condition for Kolmogorov’s extension theorem, and we
have the existence of a unique probability measure P on (Ω,B), such that

P ◦ π−1
N = P prod

N . (5.7)

(Ω,B, P ) defines a loop-erased random walk X on F0: For each ω = (ω0, ω1, · · ·) ∈ Ω and
i ∈ Z+, take N such that i 5 2N and let

X(ω)(i) = ωN (i).
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The right hand side is determined uniquely as long as i 5 2N holds, since ωN |N−1 = ωN−1 for
any N ∈ N. This completes the proof of Theorem 1.

To summarize, we established the following:
Theorem 1 (restatement) On a measurable space (Ω,B), an infinite length LERW X on the
infinite pre-Sierpiński gasket is constructed such that X stopped at the exit time of △OaNbN has
the same law as P̃N for any N ∈ Z+.

Remark 1
For N ∈ N and w ∈ UN , let uN = 2−N Q̂Nw and let uM = (2−M Q̂Mw)|∆0 ,M = 0, 1, · · · , N−1,

where Q̂M is defined in the second last paragraph of Section 3 and ∆0 = △Oa0b0. Note that
uM ∈ Γ0. For any M 5 N − 1 and any xk ∈ Γ0, k =M,M + 1, · · · , N ,

P
(i)
N [ uM = xM | uk = xk, k =M + 1,M + 2, · · · , N ] = P

(i)
N [ uM = xM | uM+1 = xM+1 ]. (5.8)

Thus, for each i = 1, 2, 3, 4, P
(i)
N , N ∈ N define a backward Markov chains on the state space

Γ0 = {v∗1, v∗2, v∗3, v∗4} such that

P
(i)
N [ uN = v∗i ] = 1,

and for M 5 N − 1,

P
(i)
N [ uM = v∗j | uM+1 = v∗k ] = Pkj ,

where Pkj denotes the (k, j)- element of the transition probability matrix, which coincides with
P in (5.6).

α =
1

28
(11, 11, 3, 3) is the unique invariant probability vector, namely, the unique nonnegative

solution to
α = αP.

Furthermore, for any probability vector a, by the Perron-Frobenius theorem, it holds that

lim
n→∞

aPn = α. (5.9)

In terms of the loop-erased walk measures, the above fact can be expressed as

P̂
(i)
N+K [ w|K ∈ AK ] =

4∑
j=1

(PN )ijP̂
(j)
K [AK ],

where for w ∈ ΓN+K , w|K denotes the path w stopped at T ex,K
1 (w) and AK ⊂ ΓK . Thus, for any

probability vector a, we have as N → ∞,

4∑
i=1

aiP̂
(i)
N+K [ w|K ∈ AK ] →

4∑
i=1

αiP̂
(i)
K [AK ].

In particular, a =
1

3
(0, 2, 0, 1) represents the ‘standard’ LERW studied in [17]. The ‘standard’

LERW and its scaling limit can be described intuitively as follows; we start with two paths
w1 = (O, b0) and w2 = (O, a0, b0) on F0 ∩ △Oa0b0, with probability 2/3 and 1/3, respectively.
Then paths w1 and w2 branch into smaller copies of paths w∗

1, · · · , w∗
10 shown in Fig. 3 (reflection

with regard to y = x/
√
3 implied), which are paths on 2−1(F0 ∩△Oa1b1), according to P̂

(2)
1 and

P̂
(4)
1 , respectively. Inductively, for each LERW path occurring on the fine pre-Sierpiński gasket

2−N (F0 ∩ △OaNbN ), by letting the path segment in each 2−N–triangle (defined similarly to a
2M–triangle, but with edge length 2−N ) branch into smaller copies of w∗

1, · · · , w∗
10 (reflection and

rotation implied), according to the type of the triangle (P̂
(2)
1 for Type 1 and P̂

(4)
1 for Type 2), we
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obtain a LERW on 2−(N+1)(F0 ∩ △OaN+1bN+1). In the limit as N → ∞, the LERW converges
to a continuous process on the Sierpiński gasket. To see the connection with (5.9), fix K ∈ N
arbitrarily. Suppose we have repeated the branching procedure N times to obtain a LERW on
2−N (F0 ∩△OaNbN ). (5.9) says that if we magnify the LERW with the factor of 2N and look at
the LERW stopped at the first exit time of △OaKbK , then the distribution approaches to that of
Z̃K as N → ∞.

6 Proof of Theorem 2

Let X be the loop-erased random walk defined in Section 5 and let

Φ̃N (x, y) =
11

14
Φ
(1)
N (x, y) +

3

14
Φ
(2)
N (x, y), (6.1)

where Φ
(i)
N (x, y), i = 1, 2 are defined in Section 4. The Laplace transform of λ−NT ex,N

1 (X) is
given by

g̃N (t) := Φ̃N (e−tλ−N
, e−2tλ−N

) =
11

14
G

(1)
N (t) +

3

14
G

(2)
N (t). (6.2)

Define for each n ∈ N,

Dn(X) = min{M = 0 : |X(i)| 5 2M , 0 5 i 5 n},

and let K = K(n) be the nonnegative integer such that

λK 5 n < λK+1 (6.3)

holds.

Proposition 11 (short-path estimate) There exist positive constants C6.1 and C6.2 such that

P [ Dn(X) < K(n)−M ] 5 C6.1e
−C6.2λM

holds for any n,M ∈ N satisfying K(n) > M .

Proof. Take C6.2 > 0 arbitrarily. Since Proposition 6 (2) implies that {g̃N (t)} is a convergent
sequence for any t ∈ C, we can take C6.1 > 0 such that g̃N (−C6.2) < C6.1 for all N ∈ N. By
Chebyshev’s inequality, we have

P̃N [ λ−NT ex,N
1 (X) = λM ] 5 g̃N (−C6.2) e

−C6.2λM
< C6.1 e

−C6.2λM
.

This leads to

P [ Dn(X) < K(n)−M ] 5 P [ T ex,K−M
1 (X) > n ]

= P̃K−M [ T ex,K−M
1 (w) > n ]

5 P̃K−M [ λ−(K−M)T ex,K−M
1 (w) > λM ]

5 C6.1e
−C6.2λM

.

2

Proposition 12 (long-path estimate) There exist positive constants C6.3 and C6.4 such that

P [ Dn(X) > K(n) +M ] 5 C6.3e
−C6.42M

for any n,M ∈ N.
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Proof. Since P [ Dn(X) > K(n)+M ] = 0 for n = 1, 2, we may assume n = 3 and hence K(n) ∈ N.
Note that

P [ Dn(X) > K(n) +M ] 5 P [ T ex,K+M
1 (X) < n ]

= P̃K+M [ T ex,K+M
1 (w) < n ]

5 P̃K+M [ T ex,K+M
1 (w) 5 λK+1 ].

Fix 0 < δ < 1 arbitrarily, then

P̃K+M [ T ex,K+M
1 (w) 5 λK+1 ] =

∑
w∈ΓK+M , ℓ(w)5λK+1

P̃K+M [w]

5 δ−1
∑

w∈ΓK+M , ℓ(w)5λK+1

P̃K+M [w] δℓ(w)λ−(K+1)

5 δ−1Φ̃K+M (δλ
−(K+1)

, δ2λ
−(K+1)

),

where we used ℓ(w) = s1(w) + 2s2(w) and the definition of the generating functions.

Let t′ = −λ−1 log δ > 0. Since Proposition 6 (3) implies that Φ̃N (δλ
−(N+1)

, δ2λ
−(N+1)

) = g̃N (t′)
(is less than 1 and) converges as N → ∞ to a limit strictly smaller than 1, we can choose 0 < r < 1
such that

Φ
(i)
N (δλ

−(N+1)
, δ2λ

−(N+1)
) < r, i = 1, 2 (6.4)

for all N ∈ N. Thus,

Φ̃K+M (δλ
−(K+1)

, δ2λ
−(K+1)

) < Φ̃M (r, r) 5 r2
M

= e−C6.42M ,

where we used Proposition 5 and (4.5) in the last inequality and set C6.4 = − log r. Taking
C6.3 = δ−1 completes the proof.

2

To obtain the displacement exponent, we use the following inequality that holds for any N–
valued random variable Y and s > 0:

s C6.5(s)

∞∑
k=1

ks−1P [ Y = k ] 5 E[Y s] 5 s

∞∑
k=1

ks−1P [ Y = k ] + C6.6(s), (6.5)

where for 0 < s < 1, C6.5(s) = 1, C6.6(s) = 1, for s > 1, C6.5(s) =
1
2s , C6.6(s) = 0, and C6.5(1) = 1,

C6.6(1) = 0.
Let ν = log 2/ log λ.

Proposition 13 For any s > 0, there exists a positive constant C1(s) such that

E[ |X(n)|s ] = C1(s) n
sν

for all n ∈ N.

Proof. Fix M0 ∈ N such that C6.1e
−C6.2λM0 < 1/2, where C6.1 and C6.2 are as in Proposition 11.

Take n1 large enough so that K(n1) > M0 + 2, where K(n) is as in (6.3). Then for n = n1,

P [ |X(n)| 5 2K−M0−2 ] 5 P [ Dn < K −M0 ] <
1

2
. (6.6)

Note that if we write X(n) = (x1, x2), then x1 ∈
1

2
Z+ and x2 ∈

√
3

2
Z+, thus 4|X(n)|2 ∈ Z+.
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We give a proof in the case of s > 2. We make use of (6.5) with Y = 4|X(n)|2.

E[ |X(n)|s ] =
1

2s
E[ (4|X(n)|2)s/2 ]

= 1

2s
s/2

2s/2

∞∑
k=1

ks/2−1P [ Y = k ]

= s

23s/2+1

∞∑
m=0

4m+2−1∑
k=4m+1

(4m+1)s/2−1 P [ Y > 4m+2 ]

= s

23s/2+1

∞∑
m=0

(4m+1)s/2 P [ Y > 4m+2 ]

= s

23s/2+1

∞∑
m=0

(4m+1)s/2 P [ |X(n)| > 2m+1 ]

= s

23s/2+1
2(K−M0−2)s P [ |X(n)| > 2K−M0−2 ]

=
s

23s/2+1
2(K−M0−2)s(1− P [ |X(n)| 5 2K−M0−2 ])

= s 2−(M0s+
7
2
s+2) 2Ks = C̃1(s)n

sν , n = n1,

where we used (6.6) and set C̃1(s) is a positive constant that does not depend on n. Setting
C1(s) = C̃1(s) ∧ n−sν

1 , we have the desired inequality for all n ∈ N.
The case of 0 < s 5 2 can be proved similarly.

2

Proposition 14 For any s > 0, there exists a positive constant C2(s) such that

E[ |X(n)|s ] 5 C2(s) n
sν

for all n ∈ N.

Proof. First note that
P [ |X(n)| = 2m ] 5 P [ Dn(X) > m− 1 ]. (6.7)

In the case of s > 2, making use of (6.5) with Y = 4|X(n)|2, we have

E[ |X(n)|s ] 5 s

2s+1

∞∑
m=0

4m+1 4(m+2)(s/2−1) P [ Y = 4m+1 ]

= s2s−3
∞∑

m=0

2sm P [ |X(n)| = 2m ]

5 s2s−3

(K+1∑
m=0

2sm P [ |X(n)| = 2m ] +

∞∑
m=K+2

2sm P [ |X(n)| = 2m ]

)

5 s2s−3

(K+1∑
m=0

2sm +

∞∑
m=K+2

2sm P [ Dn(X) > m− 1 ]

)
(use of (6.7))

5 c1(s)2
Ks + s2s−3C6.3 2s(K+1)

∞∑
ℓ=1

2ℓse−C6.42ℓ (by Proposition 12)

5 C2(s)n
sν ,

where c1(s) and C2(s) are positive constants depending only on s and we used the convergence
of the series above. The case for 0 < s 5 2 can be proved similarly. 2
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Proposition 14 combined with Proposition 13 gives Theorem 2.

Remark 2
We can show that the growth exponent is equal to 1/ν. Define

M(m) := min{n ∈ N : |X(n)| > m},

then we have the following.

Proposition 15 There exist positive constants C7 and C8 such that for all m ∈ N

C7 m
1/ν 5 E[M(m)] 5 C8 m

1/ν

holds.

Proof. Note that
E[M(2N )] = E[T ex,N

1 (X) ] + 1 = ẼN [T ex,N
1 (X) ] + 1,

where ẼN denotes expectation with regard to P̃N . Proposition 6(3) implies that

lim
N→∞

E[M(2N ) ]

(2N )1/ν

exists and is positive and finite. Then the monotonicity of E[M(m)] in m gives the statement. 2

Remark 3
In [6], the ‘standard’ self-avoiding walk, which is defined by the uniform measure on self-

avoiding paths of a given length, is studied. They showed the existence of the exponent in the
form of

lim
n→∞

logEn[|X ′(n)|s]
log n

= s νSAW, s > 0 (6.8)

where |X ′(n)| denotes the end-to-end distance of an n-step self-avoiding path, and νSAW =

log 2/ log(7−
√
5

2 ). The fact that the exponent ν in Theorem 2 is different from νSAW shows that
LERW is in a different universality class from the self-avoiding walk. Note also that self-avoiding
walk cannot be extended to that of infinite length, for the consistency condition is not satisfied
because of culs-de-sac, thus the expectation in (6.8) is taken over the uniform measure on the
n-step self-avoiding paths.

7 Proof of Theorem 3

In this section, we prove the law of the iterated logarithm. First we prove the upper bound:

Proposition 16 There exists a non-random positive constant C4 such that

lim
n→∞

|X(n)|
ψ(n)

5 C4, P– a.s.,

where ψ(n) = nν(log log n)1−ν .
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Proof. Let µ̂N be the distribution of λ−NT ex,N
1 (X) under P . For each x > 1 there is a unique

integer N such that 2N 5 x < 2N+1. For k > 0 satisfying 2−Nk = C4.5, Proposition 7 and
Theorem 8 (2) imply that

P [ max
05j5k

|X(j)| > x ] 5 P [ T ex,N
1 (X) 5 k ]

= µ̂N ([0, λ−Nk]])

5 C4.6e
−C4.7(xk−ν/2)1/(1−ν)

.

Let γ > 1 and A > 0. For m ∈ N, let x = Aψ(γm) and k be the largest integer that does not
exceed γm+1. Then for all m large enough, the condition 2−Nk = C4.5 is satisfied, thus we can
apply the above inequality to have

P [ max
05j5γm+1

|X(j)| > Aψ(γm) ] 5 C4.6e
−C4.7(xk−ν/2)1/(1−ν) 5 c3

mα
,

where α = C4.7

(
A

2γν

)1/(1−ν)

and c3 is a positive constant independent of m. Thus,

∞∑
m=1

P [ max
γm<j5γm+1

|X(j)| > Aψ(γm) ] 5
∞∑

m=1

P [ max
05j5γm+1

|X(j)| > Aψ(γm) ]

5 c4 + c3

∞∑
m=1

1

mα
,

for some constant c4 > 0. The sequence

∞∑
m=1

1

mα
converges if we take A large enough so that

α > 1. The rest is a usual Borel-Cantelli argument and the statement holds with C4 = A. 2

Now we show the lower bound:

Proposition 17 There exists a non-random positive constant C3 such that

C3 5 lim
n→∞

|X(n)|
ψ(n)

, P - a.s.

holds.

Note that we cannot use the Markov property, which is essential for establishing the lower
bound for simple random walk on Zd. However, ELLF construction allows us to make use of a
‘Markov-like structure’ in the scale direction to obtain the result. Our proof follows closely the
proof of the law of the iterated logarithm for stochastic chains on Z in [5], except that we do not
have the independence of T ex,M+1

1 (X)− T ex,M (X), M ∈ Z+.

Lemma 18 If there exists a positive constant c such that

P [

∞∩
N=1

∞∪
M=N

{(logM)(1−ν)/νλ−MT ex,M
1 (X) 5 c} ] = 1, (7.1)

then it holds that

lim
n→∞

|X(n)|
ψ(n)

= c−ν , P - a.s..

21



Proof. The assumption implies that for P–almost all ω ∈ Ω, there exists an increasing sequence
M ′

k =M ′
k(ω), k = 1, 2, . . . such that

(logM ′
k)

(1−ν)/νλ−M ′
kT

ex,M ′
k

1 (X) 5 c. (7.2)

It follows that for M ′
k = 3

M ′
k = log T

ex,M ′
k

1 (X)− log c

log λ
+

1−ν
ν log logM ′

k

log λ
= log T

ex,M ′
k

1 (X)− log c

log λ
,

and for any ε > 0, there exists a k0 ∈ N such that

logM ′
k = (1− ε) log log T

ex,M ′
k

1 (X) (7.3)

holds for all k = k0. On the other hand, (7.2) implies

|X(T
ex,M ′

k
1 (X))| = 2M

′
k = c−ν(logM ′

k)
1−ν (T

ex,M ′
k

1 (X))ν .

This combined with (7.3) leads to

|X(T
ex,M ′

k
1 (X))|

(T
ex,M ′

k
1 (X))ν(log log T

ex,M ′
k

1 (X))1−ν
= c−ν(1− ε)1−ν ,

and

lim
n→∞

|X(n)|
ψ(n)

= c−ν(1− ε)1−ν .

Since ε is arbitrary, we have proved the statement.
2

In the rest of this section we prove (7.1). To this end, first we establish two inequalities. In
the following we write TM for T ex,M

1 .

By Proposition 6 (2), G
(i)
N (−1) converges to gi(−1) as N → ∞ for i = 1, 2, thus there exists

a positive constant D such that G
(i)
N (−1) 5 D holds for all N ∈ N and i = 1, 2. This combined

with Chebyshev’s inequality gives

P̂
(i)
N [ TN (w) = t ] 5 De−λ−N t, N ∈ N, i = 1, 2, 3, 4

where P̂
(i)
N is defined in Section 5. In particular, if we set

P̂max
N [A] := max

i∈{1,2,3,4}
P̂

(i)
N [A], A ⊂ ΓN ,

we have
P̂max
N [ TN (w) = t ] 5 De−λ−N t. (7.4)

By Proposition 7 and Theorem 8(1), there exist C > 0 such that for any b > 0 and i = 1, 2, 3, 4,

lim
N→∞

αN
ν/(1−ν) log P̂

(i)
N [ TN (w) 5 λNαN ] = −C,

with αN = b (logN)−(1−ν)/ν . This implies that for any C0 > C there exists N0 ∈ N such that

P̂
(i)
N [ TN (w) 5 bλN (logN)−(1−ν)/ν ] = N−C0 b−ν/(1−ν)
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holds for any N = N0. In particular, if we set

P̂min
N [A] := min

i∈{1,2,3,4}
P̂

(i)
N [A], A ⊂ ΓN ,

then
P̂min
N [ TN (w) 5 bλN (logN)−(1−ν)/ν ] = N−C0 b−ν/(1−ν)

, N = N0. (7.5)

Inequalities (7.4) and (7.5) are used to prove Lemma 19 and Lemma 20 below.

Now let tn = 2C
(1−ν)/ν
0 λn(log n)−(1−ν)/ν and

Mn =

[
1

log λ

(
1 +

2(1− ν)

ν

)
(n+ 1) log log(n+ 1) + (η + 1)n

]
,

where [a] denotes the largest integer not exceeding a and

η =
1

log λ
log

2

C
(1−ν)/ν
0

.

Lemma 19

∞∑
n=1

P [ TMn−1(X) >
1

2
tMn ] <∞.

Proof. By the definition of Mn, we have for n = 2,

Mn −Mn−1 =
1

log λ

(
1 +

2(1− ν)

ν

)
log log n+ η.

It follows that

λ−Mn−1tMn/2 = C
(1−ν)/ν
0 λMn−Mn−1(logMn)

−(1−ν)/ν = 2 log n

(
(log n)2

logMn

)(1−ν)/ν

.

Since Mn = O(n log log n), λ−Mn−1tMn/2 = 2 log n holds for n sufficiently large. This combined
with (7.4) gives

P [ TMn−1(X) >
1

2
tMn ] 5 P̂max

Mn−1
[ TMn−1(w) = 1

2
tMn ] 5 De−λ−Mn−1 tMn/2 5 De−2 logn =

D

n2
,

which implies the desired convergence. 2

Lemma 20

∞∑
n=1

P̂min
Mn

[ TMn(w)− TMn−1(w) 5 1

2
tMn ] = ∞.

Proof. This follows from (7.5). Setting b = C
(1−ν)/ν
0 in (7.5) and by the definition of Mn, we have

for n0 sufficiently large,

∞∑
n=1

P̂min
Mn

[ TMn(X)− TMn−1(X) 5 1

2
tMn ] =

∞∑
n=1

P̂min
Mn

[ TMn(w) 5 1

2
tMn ] =

∞∑
n=n0

M−1
n

= 1

η + 2 + 1
log λ(1 + 21−ν

ν )

∞∑
n=n0+1

1

n log log n
= c1

∞∑
n=n0+1

1

n log n
= ∞,

where c1 is a positive constant. 2
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Now we go on to show that (7.1) holds. We see that for any k,K ∈ N with k < K

P [
K∪
ℓ=k

{TMℓ(X) 5 tMℓ
} ] = P [

K∪
ℓ=k

{TMℓ(X)− TMℓ−1(X) 5 1

2
tMℓ

, TMℓ−1(X) 5 1

2
tMℓ

} ]

= 1− P [
K∩
ℓ=k

({TMℓ(X)− TMℓ−1(X) >
1

2
tMℓ

} ∪ {TMℓ−1(X) >
1

2
tMℓ

}) ]

= 1− P [

K∩
ℓ=k

{TMℓ(X)− TMℓ−1(X) >
1

2
tMℓ

} ]−
K∑
ℓ=k

P [TMℓ−1(X) >
1

2
tMℓ

].

(7.6)

We first show that

P [
K∩
ℓ=k

{TMℓ(X)− TMℓ−1(X) >
1

2
tMℓ

} ] → 0, K → ∞

holds.
Note that by definition

P [

K∩
ℓ=k

{TMℓ(X)− TMℓ−1(X) >
1

2
tMℓ

} ]

= P̃MK
[

K∩
ℓ=k

{TMℓ(w)− TMℓ−1(w) >
1

2
tMℓ

} ] (by (5.4) and (5.7))

= P rw
MK

[
K∩
ℓ=k

{TMℓ(Lw)− TMℓ−1(Lw) >
1

2
tMℓ

} ] (by (5.2))

=
11

28
(P

(1)
MK

+ P
(2)
MK

)[

K∩
ℓ=k

{TMℓ(Lw)− TMℓ−1(Lw) >
1

2
tMℓ

} ]

+
3

28
(P

(3)
MK

+ P
(4)
MK

)[

K∩
ℓ=k

{TMℓ(Lw)− TMℓ−1(Lw) >
1

2
tMℓ

} ] (by (5.3))

Now recall the procedure for loop erasure. Note that Mk < MK . In the process of erasing
2Mk–scale loops from the random walk Z̃MK

, we obtain Q̂Mk
Z̃MK

. (Q̂M is defined at the end of
Section 3. Recall that for M < N and w ∈WN ∪VN , Q̂Mw is a loopless path on the coarse graph
2MF0.) Then we restore the original fine structures to each step of Q̂Mk

Z̃MK
and continue loop

erasure. For each ∆i in σMk
(Q̂Mk

Z̃MK
), if ∆i is Type 1 with regard to Q̂Mk

Z̃MK
, the rest of the

procedure is the same as loop erasure for ZMk
(modulo rotation and reflection), and if Type 2,

the same as that for Z ′
Mk

(ZM and Z ′
M are defined in (2.1) and (2.2)). Conditioned on Q̂Mk

Z̃MK
,
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path segments in different 2Mk–triangles are independent. Thus

P
(1)
MK

[

K∩
ℓ=k

{TMℓ(Lw)− TMℓ−1(Lw) >
1

2
tMℓ

} ]

=
∑

w′∈ΓMK−Mk

P
(1)
MK

[

K∩
ℓ=k

{TMℓ(Lw)− TMℓ−1(Lw) >
1

2
tMℓ

} | 2−MkQ̂Mk
(w) = w′ ]

× P
(1)
MK

[ 2−MkQ̂Mk
(w) = w′ ]

=
∑

w′∈ΓMK−Mk

P
(1)
MK

[ TMk(Lw)− TMk−1(Lw) >
1

2
tMk

| 2−MkQ̂Mk
(w) = w′ ]

× P
(1)
MK

[

K∩
ℓ=k+1

{TMℓ(Lw)− TMℓ−1(Lw) >
1

2
tMℓ

} | 2−MkQ̂Mk
(w) = w′ ]P

(1)
MK

[2−MkQ̂Mk
(w) = w′]

=
∑

w′∈ΓMK−Mk

P̂
(∗)
Mk

[ TMk(w)− TMk−1(w) >
1

2
tMk

]

× P
(1)
MK

[

K∩
ℓ=k+1

{TMℓ(Lw)− TMℓ−1(Lw) >
1

2
tMℓ

} | 2−MkQ̂mk
(w) = w′ ]P

(1)
MK

[2−MkQ̂Mk
(w) = w′]

5 P̂max
Mk

[ TMk(w)− TMk−1(w) >
1

2
tMk

]

×
∑

w′∈ΓMK−Mk

P
(1)
MK

[

K∩
ℓ=k+1

{TMℓ(Lw)− TMℓ−1(Lw) >
1

2
tMℓ

} | 2−MkQ̂mk
(w) = w′ ]

× P
(1)
MK

[ 2−MkQ̂Mk
(w) = w′ ]

5 P̂max
Mk

[ TMk(w)− TMk−1(w) >
1

2
tMk

] P
(1)
MK

[
K∩

ℓ=k+1

{TMℓ(Lw)− TMℓ−1(Lw) >
1

2
tMℓ

}],

where P̂
(∗)
Mk

= P
(1)
Mk

if the first element of σMk
(Q̂Mk

w) is Type 1, and P̂
(∗)
Mk

= P
(2)
Mk

if Type 2.
We have similar results for i = 2, 3, 4 to have

P rw
MK

[

K∩
ℓ=k

{TMℓ(Lw)− TMℓ−1(Lw) >
1

2
tMℓ

} ]

5 P̂max
Mk

[ TMk(w)− TMk−1(w) >
1

2
tMk

] P rw
MK

[

K∩
ℓ=k+1

{TMℓ(Lw)− TMℓ−1(Lw) >
1

2
tMℓ

} ].
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Repeating this procedure, we have

P [

K∩
ℓ=k

{TMℓ(X)− TMℓ−1(X) >
1

2
tMℓ

} ]

= P rw
MK

[

K∩
ℓ=k

{TMℓ(Lw)− TMℓ−1(Lw) >
1

2
tMℓ

} ]

5
K∏
ℓ=k

P̂max
Mℓ

[ TMℓ(w)− TMℓ−1(w) >
1

2
tMℓ

]

=

K∏
ℓ=k

(1− P̂min
Mℓ

[ TKℓ(w)− TMℓ−1(w) 5 1

2
tMℓ

])

5 exp(−
K∑
ℓ=k

P̂min
Mℓ

[ TMℓ(w)− TMℓ−1(w) 5 1

2
tMℓ

])

→ 0 (K → ∞),

where we used Lemma 20.
By Lemma 19, we see that the third term in the rightmost side in (7.6) converges to 0, first

taking the limit as K → ∞, then k → ∞.
Thus

P [
∞∩
k=1

∞∪
M=k

{(logM)(1−ν)/νλ−MT ex,M
1 (X) 5 2C

(1−ν)/ν
0 } ] = P [

∞∩
k=1

∞∪
ℓ=k

{TMℓ(X) 5 tMℓ
} ]

= lim
k→∞

lim
K→∞

P [
K∪
ℓ=k

{TMℓ(X) 5 tMℓ
} ] = 1,

which proves (7.1).
Proposition 16 combined with Proposition 17 completes the proof of Theorem 3.
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