Non-Markov processes on fractals

Kumiko Hattori (Tokyo Metropolitan University)

3rd Bremen Winter School and Symposium Diffusion on Fractals and Non-linear Dynamics

Markov vs. Non-Markov

Markov
ex. Simple random walk Jumps to one of the nearest sites with equal probability.

non-Markov

ex. Self-avoiding walk
Cannot visit any sites more than once.

2

We focus on two basic questions:
(1) Displacement exponent
(2) Scaling limit
for the following processes on a fractal (SG):

1. Self-avoiding walks (SAW)
2. Loop-erased random walks (LERW)
3. Self-repelling walks (and their loop-erasure) in terms of
(A) Find a model that suits fractals
(B) Extract information on 'standard' models.

Outline

1. Self-avoiding walk

1-1. Two basic questions
1-2. Background
1-3. Fixed-ends model and answers to the questions
1-4. Generating functions and recursions
2. Loop-erased random walk

2-1. Erasing-larger-loops-first model
2-2. Answers to the questions
3. Self-repelling walks (and their loop-erasure)

1. Self-avoiding walk

(1) How far can an n-step walk go in average?

For each fixed n, consider the set of all n-step selfavoiding paths starting from O, and assign equal probability to each n-step path \rightarrow 'standard' self-avoiding walk. $w(n)$: the location after n-steps, $|w(n)|$: Euclidian distance from O.

Mean square displacement $E\left[|w(n)|^{2}\right] \sim ? n \rightarrow \infty$

1-1. Two basic questions

(1) How far can an n-step walk go in average?

For each fixed n, consider the set of all n-step selfavoiding paths starting from O, and assign equal probability to each n-step path \rightarrow 'standard' self-avoiding walk. $w(n)$: the location after n-steps, $|w(n)|$: Euclidian distance from O.

Mean square displacement $E\left[|w(n)|^{2}\right] \sim ? n \rightarrow \infty$

If the mean square displacement shows a power behavior like $E\left[|w(n)|^{2}\right] \sim n^{2 v}, \quad n \rightarrow \infty$, v : the displacement exponent .
cf. Simple random walk on \mathbb{Z}^{d}

$$
E\left[|w(n)|^{2}\right]=n, v=1 / 2 .
$$

(2) Scaling limit (The limit as the edge length $a \rightarrow 0$)

Does the scaling limit exist? (Does the SAW converge to any limit process as $a \rightarrow 0$?)
If yes, what is the limit process like?

cf. Simple random walk on $(a \mathbb{Z})^{d} \rightarrow d$-dimensional BM

$$
(a \rightarrow 0)
$$

1-2. Background

SAW on \mathbb{Z}^{d}

displacement exponent
$d=1 \quad v=1$
$d=2 \quad v=\frac{3}{4}$
$d=3 \quad v=0.5876 \cdots$
$d=4 \quad v=\frac{1}{2}+(\log$ correction $)$
$d \geq 5$
$v=\frac{1}{2}$
trivial
SLE $_{8 / 3}$
?
BM
BM (Hara, Slade)
Low dimensions are tough! blue : conjectures.
\Longrightarrow What about SAW on fractals?

SAW on \mathbb{Z}^{d}

displacement exponent
$d=1 \quad v=1$
$d_{H}=1.58 \quad$ Sierpinski gasket
$d=2 \quad v=\frac{3}{4}$
$d=3 \quad v=0.5876 \cdots$
$d=4 \quad v=\frac{1}{2}+(\log$ correction $)$
$d \geq 5$
$v=\frac{1}{2}$
BM
scaling limit
trivial
$\operatorname{SLE}_{8 / 3}$
?
BM
(Hara, Slade)
Low dimensions are tough! blue : conjecture.

Pre-Sierpinski gasket

G_{0} : a unit triangle, $G_{N} \times 3 \rightarrow G_{N+1}$

$a_{N}=2^{N} a_{0}, b_{N}=2^{N} b_{0}, \Delta O a_{N} b_{N}$: the outer triangle of G_{N}. Infinite iteration \rightarrow an infinite graph

an infinite graph with edge length 1 .

12
(1) Displacement exponent

2-dim Sierpinski gasket $\quad\left(d_{H}=\frac{\log 3}{\log 2}=1.58 \ldots\right)$ Physicists had known the answer. (1970's and 1980's)

$$
v=\frac{\log 2}{\log \lambda}=0.798 \ldots>\frac{1}{2}, \lambda=\frac{7-\sqrt{5}}{2}=2.38 \cdots .
$$

Mathematicians proved the answer. (1990's)
v exists and the above answer is right.
The scaling limit exists.

To solve mathematically:
(A) Construct a model that leads to recursion relations of generating functions (making use of fractal structures).
(B) Extract information for the 'standard' SAW (uniform distribution on n-step paths).

1.-3. Fixed-ends model and answers

$\triangle O a_{N} b_{N}$: the outer triangle of G_{N}. For each N, W_{N} : the set of all self-avoiding paths $O \rightarrow a_{N}$ in G_{N}. $L(w)=\sharp$ (steps of path $w), \quad$ Fix $\beta>0$: parameter. Assign each $w \in W_{N}$ probability $P_{N}[w] \propto e^{-\beta L(w)}$

$$
\begin{aligned}
& N=2 \\
& w \in W_{2}=\left\{\text { paths } O \rightarrow a_{2}\right\} \\
& L(w)=9 \\
& P[w] \propto e^{-9 \beta}
\end{aligned}
$$

Natural in two ways.

Thm. 1 Displacement exponent (T. Hattori, Kusuoka 1992)

For the 'standard' SAW (equal prob. to each n-step path),
$\forall s>0, \lim _{n \rightarrow \infty} \frac{\log E\left[|w(n)|^{s}\right]}{\log n}=s v, \quad v=\frac{\log 2}{\log \lambda}=0.798 \cdots>1 / 2$.

$$
\lambda=2 x_{c}+3 x_{c}^{2}
$$

(B) This result is obtained by looking into the behavior of the dynamical system near the fixed point.
$N_{n}=\sharp\{$ n-step SA paths $\}, \quad \beta_{c}=0.8276 \cdots$,
$\exists C, C^{\prime}, \gamma, \gamma^{\prime}>0$;

$$
C n^{-\gamma} e^{\beta_{c} n} \leq N_{n} \leq C^{\prime} n^{\gamma^{\prime}} e^{\beta_{c} n}
$$

(2) The scaling limit.

Consider finite pre-Sierpinski gaskets.
$\triangle O a b$: a unit triangle. $F_{N}=2^{-N} G_{N}$ a graph with edge length 2^{-N}. Sierpinski gasket $F=\cup_{N=1}^{\infty} F_{N}$

F_{N} : pre-SG with edge length 2^{-N} Shrink the fixed-end SAW by 2^{-N}.(step size 2^{-N}). $X_{N}(i)$: the location of SAW (from O to a) at the i-th step.

For $w=\left(w_{0}, w_{1}, w_{2}, \cdots, w_{L(w)}\right) \in 2^{-N} W_{N}$,

$$
P\left[X_{N}(i)=w_{i}, i=1,2, \cdots, L(w)\right] \propto e^{-\beta L(w)}
$$

18

reminder：$e^{-\beta L(w)}$
smaller steps \rightarrow needs acceleration
Thm． 2 Scaling limit（T．Hattori，K．H．1991）
As $N \rightarrow \infty$
$\beta>\beta_{c} \quad X_{N}\left(2^{N} t\right) \rightarrow$ 【constant motion along $\overline{O a}$ 】
$\beta=\beta_{c} \quad X_{N}\left(\lambda^{N} t\right) \rightarrow$ 【Self－avoiding process】 $d_{H}(=1 / v)>1 \quad$ a．s．（v：displ．exp．）
$\beta<\beta_{c} \quad X_{N}\left(3^{N} t\right) \rightarrow$ 【Peano curve】
19

1-4. Generating functions and recursions

Going back to the pre-Sierpinski gasket with edge length 1,

$$
\begin{aligned}
& N=2 \\
& w \in W_{2}=\left\{\text { paths } O \rightarrow a_{2}\right\} \\
& L(w)=9 \\
& P[w] \propto e^{-9 \beta}
\end{aligned}
$$

Preparation for the definition of generating functions:
For a path $w \in W_{N}$, count the numbers of unit triangles w passes through:

Type 1

Type 2

$$
\begin{aligned}
& s_{1}(w)=\sharp\{\text { triangles of Type } 1\} \\
& s_{2}(w)=\sharp\{\text { triangles of Type } 2\}
\end{aligned}
$$

Random variables
21

$$
\begin{aligned}
& s_{1}(w)=\sharp\{\text { Type } 1\} \\
& s_{2}(w)=\sharp\{\text { Type } 2\}
\end{aligned}
$$

Number of steps: $L(w)=s_{1}(w)+2 s_{2}(w)$
(In other words, 'time' it takes to go $O \rightarrow a$ if jumps occur at integer times.)

Genarating functions

$$
W_{N}=W_{1, N} \cup W_{2, N}, \quad x, y \geq 0
$$

$W_{1, N}$: Paths not visiting $b_{N}, W_{2, N}$: Paths visiting b_{N}, $x, y \geq 0$

$$
\begin{gathered}
\Phi_{1}(x, y)=x^{2}+2 x y+y^{2}+2 x^{2} y+x^{3}, \\
\Theta_{1}(x, y)=x^{2} y+2 x y^{2}, x, y \geq 0
\end{gathered}
$$

24

Recursions

$$
\left(\Phi_{N}(x, y), \Theta_{N}(x, y)\right)=
$$

$\left(\Phi_{1}\left(\Phi_{N-1}(x, y), \Theta_{N-1}(x, y)\right), \Theta_{1}\left(\Phi_{N-1}(x, y), \Theta_{N-1}(x, y)\right)\right)$.

$$
\Phi_{N}(x, y):=\sum_{w \in W_{1, N}} x^{s_{1}(w)} y^{s_{2}(w)}=\Phi_{1}\left(\Phi_{N-1}(x, y), \Theta_{N-1}(x, y)\right)
$$

Decompose $w \in W_{N}$ into a coarse path and finer structures.
Blue : 2^{N-1}-scale coarse paths (similar to a path in W_{1})
$\rightarrow x^{2} y$.

Each 2^{N-1} - triangle is congruent to $G_{N-1} \rightarrow \Phi_{N-1}^{2} \Theta_{N-1}$.

Recursions (Obtained from fractal structure)

$$
\begin{gathered}
\left(\Phi_{N}(x, y), \Theta_{N}(x, y)\right)= \\
\left(\Phi_{1}\left(\Phi_{N-1}(x, y), \Theta_{N-1}(x, y)\right), \Theta_{1}\left(\Phi_{N-1}(x, y), \Theta_{N-1}(x, y)\right)\right)
\end{gathered}
$$

Two-dimentional dynamical system.
Iterations of $\left(\Phi_{1}, \Theta_{1}\right)$
$(x, y) \rightarrow\left(\Phi_{1}(x, y), \Theta_{1}(x, y)\right) \rightarrow\left(\Phi_{2}(x, y), \Theta_{2}(x, y)\right) \rightarrow \cdots$

$$
\Phi_{1}(x, y)=x^{2}+2 x y+y^{2}+2 x^{2} y+x^{3} .
$$

28

Asymptotic behavior of the dynamical system.
$\exists D \in \mathbb{R}_{+}^{2} \quad$ open
As $N \rightarrow \infty$,

$$
\left(\Phi_{N}(x, y), \Theta_{N}(x, y)\right) \rightarrow \begin{cases}(0,0), & (x, y) \in D \\ \left(x_{c}, 0\right), & (x, y) \in \partial D \\ (\infty, \infty), & (x, y) \in \mathbb{R}_{+}^{2} \backslash \bar{D}\end{cases}
$$

$\left(x_{c}, 0\right)$: the unique fixed point in $\mathbb{R}_{+}^{2} \backslash\{(0,0)\}$.

$$
\left(\Phi\left(x_{c}, 0\right), \Theta\left(x_{c}, 0\right)\right)=\left(x_{c}, 0\right), \quad x_{c}=(\sqrt{5}-1) / 2
$$

Fixed-ends model

A special choice for (x, y) gives the fixed-ends model.

$$
\begin{array}{cl}
\exists \beta_{c} ;\left(e^{-\beta_{c}}, e^{-2 \beta_{c}}\right) \in \partial D & \beta_{c}=0.8276 \cdots \\
\lambda=2 x_{c}+3 x_{c}^{2} & \text { (as in Thms } 1 \text { and 2) }
\end{array}
$$

Also for 3-dim Sierpinski gasket, v and the scaling limit are known. (T.Hattori, Kusuoka, K.H. 1993)
\rightarrow 4-dimensional dynamical system.

Some results for general d-dim SG's. (T.Hattori, Tsuda 2002) m-gasket (Kasuga , master's thesis)

2. Loop-erased random walk

Simple random walk on a graph Jumps to a nearest neighbor with equal probability.

2. Loop-erased random walk

Simple random walk on a graph Erase loops from SRW chronologically.

LERW is self-avoiding, but the distribution is different from SAW. (Lawler 1980)

Sierpinski gasket
Physicists knew (growth exponent, D.Dhar, A.Dhar (1997))

$$
\begin{gathered}
v=1 / d_{L E R W}=\log 2 / \log \lambda_{L E R W}=0.83 \ldots \\
\lambda_{L E R W}=(20+\sqrt{205}) / 15
\end{gathered}
$$

Mathematicians proved (the existence of the scaling limit and) (2014)

$$
d_{L E R W}=\log \lambda_{L E R W} / \log 2
$$

However,

$$
E\left[|w(n)|^{2}\right] \sim n^{2 / d_{L E R W}} ? \text { open! }
$$

Notations

$\triangle O a b$: a unit triangle. $F_{N}=2^{-N} G_{N}$ a graph with edge length 2^{-N}. Sierpinski gasket $F=\cup_{N=1}^{\infty} F_{N}$

2-1. Erasing-larger-loops-first model (ELLF)

Z_{N} : Simple random walk on F_{N}, starting at O and stopped at a.

Two conditioned simple random walks on F_{N} from O to a. P_{N} : the path measure of SRW not via b. P_{N}^{\prime} : the path measure of SRW via b.
For example, (note $\left.Z_{1}(0)=O, Z_{1}\left(L\left(w_{1}\right)\right)=a\right)$
$P_{1}\left[w_{1}\right]=P\left[Z_{1}(i)=w_{1}(i), i=0,1,2, \cdots L\left(w_{1}\right)\right]$
$=\left(\frac{1}{2}\right)^{2}\left(\frac{1}{4}\right)^{4} /\left(\frac{1}{2}\right)$.
Conditioned

Loop erasure from random walks on F_{1} (chronological).

L : Loop-erasing operator.
$\hat{P}_{1}=P_{1} \circ L^{-1}, \hat{P}_{1}^{\prime}=P_{1}^{\prime} \circ L^{-1}:$ LERW measures
($\hat{P}_{1}\left[w^{\prime}\right]$ is the probability to get a path w^{\prime} as a result of loop-erasure.) Infinitely many paths result in a same path by L.
These probabilities can be calculated directly.

$$
\left.\hat{P}_{1}=P_{1} \circ L_{1}^{-1}: \text { LERW measure (SRW not via } b\right)
$$

$$
\begin{gathered}
\hat{P}_{1}\left[w_{1}\right]=\frac{1}{2}, \hat{P}_{1}\left[w_{2}\right]=\hat{P}_{1}\left[w_{3}\right]=\frac{2}{15}, \\
\hat{P}_{1}\left[w_{4}\right]=\hat{P}_{1}\left[w_{5}\right]=\hat{P}_{1}\left[w_{6}\right]=\frac{1}{30}, \hat{P}_{1}\left[w_{7}\right]=\frac{2}{15}, \\
\hat{P}_{1}\left[w_{i}\right]=0, i=8,9,10 .
\end{gathered}
$$

$$
\hat{P}_{1}^{\prime}=P_{1}^{\prime} \circ L_{1}^{-1}: \text { LERW measure }(\text { SRW via } b)
$$

$$
\hat{P}_{1}^{\prime}\left[w_{1}\right]=\frac{1}{9}, \hat{P}_{1}^{\prime}\left[w_{2}\right]=\hat{P}_{1}^{\prime}\left[w_{3}\right]=\frac{11}{90},
$$

$\hat{P}_{1}^{\prime}\left[w_{4}\right]=\hat{P}_{1}^{\prime}\left[w_{5}\right]=\hat{P}_{1}^{\prime}\left[w_{6}\right]=\frac{2}{45}, \quad(b$ can be erased $)$

$$
\begin{aligned}
\hat{P}_{1}^{\prime}\left[w_{7}\right]=\frac{8}{45}, \hat{P}_{1}^{\prime}\left[w_{8}\right]= & \frac{2}{9}, \hat{P}_{1}^{\prime}\left[w_{9}\right]=\hat{P}_{1}^{\prime}\left[w_{10}\right]=\frac{1}{18} . \\
& 40
\end{aligned}
$$

(A) Erasing-larger-loops-first rule (ELLF model)

Erase loops with diameter in $(1 / 2,1] \Longrightarrow$ Erase loops with diameter in ($1 / 4,1 / 2] \Longrightarrow$ Erase loops with diameter in $(1 / 8,1 / 4] \Longrightarrow \cdots \rightarrow$ Recursions

Erasing-larger-loops-first model (ELLF) (not

 chronologically)

O b
SRW on F_{N}
(2 ${ }^{-N}$ - lattice)

Coarse-grained walk (SRW on F_{1})

Erasing-larger-loops-first model (ELLF) (not

 chronologically)
Step 0 .

$O \quad b$
SRW on F_{N}
(2 ${ }^{-N}$ - lattice)

Step 1.

Coarse-grained walk (SRW on F_{1})

The original path

44

Each 2^{-1} triangle is similar to F_{N-1}. Apply Step 1-3 to each path segment and erase largest-scale (larger than $1 / 4)$ loops. Repeat until the path has no loops.

Similar to F_{N-1}
0 anch b b

45

Resulting loop-erased path (After repetition of Q and L on F_{1})

L: Loop-erasing operator
$\hat{P}_{N}=P_{N} \circ L^{-1}:$ LERW path meas.

Generating functions

\hat{W}_{N} : The set of loopless paths on F_{N} from O to a, $\hat{P}_{N}=P_{N} \circ L^{-1}, \hat{P}_{N}^{\prime}=P_{N}^{\prime} \circ L^{-1}:$ LERW path measures

$$
\begin{gathered}
\Phi_{N}(x, y)=\sum_{w \in \hat{W}_{N}} \hat{P}_{N}(w) x^{s_{1}(w)} y^{s_{2}(w)}, \\
\Theta_{N}(x, y)=\sum_{w \in \hat{W}_{N}} \hat{P}_{N}^{\prime}(w) x^{s_{1}(w)} y^{s_{2}(w)}, \quad x, y \geq 0 .
\end{gathered}
$$

Type 1
Type 2
$s_{1}(w)=\sharp\left\{2^{-N}\right.$-triangles of Type 1$\}, s_{2}(w)=\sharp\{$ Type 2$\}$.

Recursions

$$
\begin{gathered}
\Phi_{N+1}(x, y)=\Phi_{1}\left(\Phi_{N}(x, y), \Theta_{N}(x, y)\right) \\
\Theta_{N+1}(x, y)=\Theta_{1}\left(\Phi_{N}(x, y), \Theta_{N}(x, y)\right), \quad N \in \mathbb{N} \\
\Phi_{1}(x, y)=\frac{1}{30}\left(15 x^{2}+8 x y+y^{2}+2 x^{2} y+4 x^{3}\right) \\
\Theta_{1}(x, y)=\frac{1}{45}\left(5 x^{2}+11 x y+2 y^{2}+14 x^{2} y+8 x^{3}+5 x y^{2}\right)
\end{gathered}
$$

Mean matrix of the number of triangles

$$
\mathbf{M}=\left[\begin{array}{cc}
\frac{\partial}{\partial x} \Phi_{1}(1,1) & \frac{\partial}{\partial y} \Phi_{1}(1,1) \\
\frac{\partial}{\partial x} \Theta_{1}(1,1) & \frac{\partial}{\partial y} \Theta_{1}(1,1)
\end{array}\right]=\left[\begin{array}{cc}
\frac{9}{5} & \frac{2}{5} \\
\frac{26}{15} & \frac{13}{15}
\end{array}\right]
$$

The larger eigenvalue

$$
\lambda_{\text {LERW }}=\frac{1}{15}(20+\sqrt{205})=2.2878 \ldots
$$

2-2. Answers

Thm. 3. (STW, HM, 2014)
Y_{N} : LERW on $F_{N} . Y_{N}\left(\lambda_{\text {LERW }}^{N} t\right)$ converges uniformly in t a.s. as $N \rightarrow \infty$ to a continuous process Y on the SG.

Thm. 4. (STW, HM 2014)
Y is almost surely self-avoiding. (Not obvious)
The path Hausdorff dimension is
$d_{\text {LERW }}(Y([0, \infty)))=\log \lambda_{\text {LERW }} / \log 2=1.1939 \ldots>1$ a.s.
Thm. 5. (Mizuno, K.H. 2014) (B)
ELLF LERW $\stackrel{\text { d }}{=}$ 'standard' LERW. (Not obvious)

Thms 3, 4 were proved by two groups independently. Shinoda, Teufl and Wagner used uniform spanning tree and obtained more detailed properties of the limit paths. Hattori, Mizuno used the erasing-larger-loops-first rule.

LERW and SAW belong to different universal classes.

$$
\begin{gathered}
d_{\text {LERW }}=\frac{\log (20+\sqrt{205}) / 15}{\log 2}=1.1939 \ldots \\
d_{S A W}=\frac{\log (7-\sqrt{5}) / 2}{\log 2}=1.2521 \ldots
\end{gathered}
$$

3. Self-repelling walks and their loop-erasure

Consider paths $O \rightarrow a$. $x>0$
Penalty u for sharp turns and returns to O. $(0 \leq u \leq 1)$

$$
P_{1}[w] \propto u^{N(w)} x^{L(w)}
$$

$$
N(w)=6, L(w)=8
$$

52

We can define a one-parameter family of self-repelling walks recursively.

Thm. 6 (Hambly, T. Hattori, K.H. 2002)
The scaling limit exists and connects the Brownian motion ($u=1$) and the self-avoiding process obtained in Thm. $2(u=0)$ continuously in u.

Thm. 7 (T. Hattori, K.H. 2004)

$$
\begin{gathered}
\forall s>0, \lim _{n \rightarrow \infty} \frac{\log E\left[|w(n)|^{s}\right]}{\log n}=s v_{u} . \\
v_{0}=v_{S A W}, v_{1}=1 / 2 .
\end{gathered}
$$

Applying the erasing-larger-loops-first rule to this family of self-repelling walks, we obtain a new one-parameter family of walks whose paths are self-avoiding.
The scaling limit exists.
For $u=1$, it is the limit of the LERW in Thm. 3, and for $u=0$, the self-avoiding process in Thm. 1 .

4. Summary

We considered two basic questions:
(1) Displacement exponent
(2) Scaling limit
for three kinds of non-Markov processes on the SG:

1. Self-avoiding walks (SAW)
2. Loop-erased random walks (LERW)
3. Self-repelling walks (and their loop-erasure)

Approach:
(A) Find a model that yields recursions.
(B) Extract information on 'standard' models.

References

- B.M. Hambly, K. Hattori, T. Hattori, Self-repelling walk on the Sierpinski gasket, PTRF, 124 (2002) 1-25
- M. Shinoda, E.Teufl, S. Wagner, Uniform spanning trees on Sierpinski graphs, arXiv:1305.5114
- K. Hattori, M. Mizuno, Loop-erased random walk on the Sierpinski gasket, SPA, 124 (2014) 566-585
khattori@tmu.ac.jp

