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Markov vs. Non-Markov
Markov　　 non-Markov
ex. Simple random walk　 ex. Self-avoiding walk
Jumps to one of the nearest　　　Cannot visit any sites
sites with equal probability.　　　　　　more than once.
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We focus on two basic questions:
(1) Displacement exponent
(2) Scaling limit
for the following processes on a fractal (SG):
1. Self-avoiding walks (SAW)
2. Loop-erased random walks (LERW)
3. Self-repelling walks (and their loop-erasure)
in terms of
(A) Find a model that suits fractals
(B) Extract information on ‘standard’ models. 　　
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Outline
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　1-2. Background
　1-3. Fixed-ends model and answers to the questions
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　2-1. Erasing-larger-loops-first model　
　2-2. Answers to the questions　
3. Self-repelling walks (and their loop-erasure)
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1. Self-avoiding walk

(1) How far can an n-step walk go in average?
For each fixed n, consider the set of all n-step self-　
avoiding paths starting from O, and assign equal
probability to each n-step path→ ‘standard’
self-avoiding walk. w(n): the location after n-steps,
| w(n) |：Euclidian distance from O.

O

|w(n)| n = 6

Mean square displacement　 E[|w(n)|2] ∼ ?　n→∞
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If the mean square displacement shows a power
behavior like E[|w(n)|2] ∼ n2ν,　n→∞,
ν : the displacement exponent .

cf. Simple random walk on Zd

　　E[|w(n)|2] = n, ν = 1/2.
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(2) Scaling limit (The limit as the edge length a→ 0)
Does the scaling limit exist? (Does the SAW converge to
any limit process as a→ 0?)
If yes, what is the limit process like?

a
cf. Simple random walk on (aZ)d → d-dimensional BM
　　　　　　　　　　　　　　　　 (a→ 0)
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1-2. Background

SAW on Zd

displacement exponent　 　　　scaling limit
d = 1　　ν = 1　　　　　　　　　　 trivial
d = 2　　ν = 3

4 　　　　　　　 　　 SLE8/3

d = 3　　ν = 0.5876 · · ·　　　　　　　?
d = 4　　ν = 1

2+(log correction) 　　BM
d ≥ 5　　ν = 1

2　　　　　　　　　BM　 (Hara, Slade)　

Low dimensions are tough!　blue : conjectures.

=⇒What about SAW on fractals?
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SAW on Zd

displacement exponent　 　　　scaling limit
d = 1　　ν = 1　　　　　　　　　　 trivial
dH = 1.58 　Sierpinski gasket
d = 2　　ν = 3

4 　　　　　　　 　　 SLE8/3

d = 3　　ν = 0.5876 · · ·　　　　　　　?
d = 4　　ν = 1

2+(log correction) 　　BM
d ≥ 5　　ν = 1

2　　　　　　　　　BM　 (Hara, Slade)　

Low dimensions are tough!　blue : conjecture.
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Pre-Sierpinski gasket

G0: a unit triangle, GN × 3→ GN+1

b1

a0

a1

b0OO b0

a0

G1

b1

a0

a1

b0O

G2

b2

a2

G0
　
aN = 2Na0, bN = 2Nb0, △OaNbN : the outer triangle of GN.
Infinite iteration→ an infinite graph
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O

　
G∞ = ∪∞N=1GN : the pre-Sierpinski Gasket

　　　 an infinite graph with edge length 1.
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(1) Displacement exponent

2-dim Sierpinski gasket　 (dH =
log 3
log 2

= 1.58 . . .）

Physicists had known the answer. (1970’s and 1980’s)

ν =
log 2
logλ

= 0.798 . . . >
1
2
, λ =

7 −
√

5
2

= 2.38 · · · .

Mathematicians proved the answer. (1990’s)
　ν exists and the above answer is right.
　The scaling limit exists.
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To solve mathematically:

(A) Construct a model that leads to recursion relations of
generating functions (making use of fractal structures).

(B) Extract information for the ‘standard’ SAW (uniform
distribution on n-step paths).
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1.-3. Fixed-ends model and answers
△OaNbN : the outer triangle of GN. For each N,
WN : the set of all self-avoiding paths O→aN in GN.
L(w) = ♯ (steps of path w), Fix β > 0 : parameter.
Assign each w ∈WN probability PN[w] ∝ e−βL(w)

　

b1

a0

a1

b0O b2

a2

L(w) = 9

N = 2
w ∈W2 = {paths O→ a2}

P[w] ∝ e−9β

Natural in two ways.
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Thm. 1　 Displacement exponent (T. Hattori, Kusuoka
1992)
For the ‘standard’ SAW (equal prob. to each n-step path),

∀s > 0, lim
n→∞

log E[|w(n)|s]
log n

= sν, ν =
log 2
logλ

= 0.798 · · · > 1/2.

λ = 2xc + 3x2
c

(B) This result is obtained by looking into the behavior of
the dynamical system near the fixed point.
Nn = ♯{n-step SA paths}, 　βc = 0.8276 · · ·,
∃C,C′, γ, γ′ > 0;

Cn−γe βcn ≤ Nn ≤ C′nγ
′
e βcn
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(2) The scaling limit.
Consider finite pre-Sierpinski gaskets.

△Oab : a unit triangle. FN= 2−NGN a graph with edge
length 2−N. 　Sierpinski gasket　 F = ∪∞N=1FN

F1

a

bO O b

a

F2
O b

a

F3

1
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FN : pre-SG with edge length 2−N

Shrink the fixed-end SAW by 2−N.(step size 2−N).
XN(i): the location of SAW (from O to a) at the i-th step.
　

1

a

O b

2−N

　
For w = (w0,w1,w2, · · · ,wL(w)) ∈ 2−NWN,

P[XN(i) = wi, i = 1, 2, · · · ,L(w)] ∝ e−βL(w)

18



1

a

O b

2−N

reminder : e−βL(w)

smaller steps→ needs acceleration

Thm. 2 　Scaling limit (T. Hattori, K.H. 1991)
As N→∞
β > βc　　XN( 2Nt )→【constant motion along Oa】
β = βc　　XN( λNt )→ 【Self-avoiding process】

dH(= 1/ν) > 1　a.s. (ν: displ. exp.)
β < βc　　XN( 3Nt )→【Peano curve】
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1-4. Generating functions and recursions

Going back to the pre-Sierpinski gasket with edge
length 1,

　

b1

a0

a1

b0O b2

a2

L(w) = 9

N = 2
w ∈W2 = {paths O→ a2}

P[w] ∝ e−9β
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Preparation for the definition of generating functions :
For a path w ∈WN, count the numbers of unit triangles
w passes through:

Type 1

Type 2

s1(w) = ♯{triangles of Type 1}

s2(w) = ♯{triangles of Type 2}

Random variables
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s1(w) = ♯{Type 1}
s2(w) = ♯{Type 2 }

s1(w) = 2, s2(w) = 3

O

a2

b2

Number of steps : L(w) = s1(w) + 2s2(w)
(In other words, ‘time’ it takes to go O→ a if jumps occur
at integer times.)
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Genarating functions

WN =W1,N ∪W2,N,　　　x, y ≥ 0
W1,N: Paths not visiting bN, W2,N : Paths visiting bN,
　x, y ≥ 0

ΦN(x, y) =
∑

w∈W1,N

xs1(w)ys2(w), ΘN(x, y) =
∑

w∈W2,N

xs1(w)ys2(w).

b1

a0

a1

b0O b2

a2

b1

a0

a1

b0O b2

a2
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Φ1(x, y) = x2 + 2xy + y2 + 2x2y + x3,

Θ1(x, y) = x2y + 2xy2, x, y ≥ 0

a1

b1O

a1

b1O

w ∈W1

x2y

w′ ∈W2

xy2
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Recursions

(ΦN(x, y),ΘN(x, y)) = 　　　　　　　　

(Φ1(ΦN−1(x, y),ΘN−1(x, y)),Θ1(ΦN−1(x, y),ΘN−1(x, y))).
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bN−1

aN−1

O bN

aN

bN−1

aN−1

O bN

aN

2N

2N−1G1

ΦN(x, y) :=
∑

w∈W1,N

xs1(w)ys2(w) = Φ1(ΦN−1(x, y),ΘN−1(x, y)).

Decompose w ∈WN into a coarse path and finer
structures.
Blue : 2N−1-scale coarse paths (similar to a path in W1)
→ x2y.
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bN−1

aN−1

O bN

aN

bN−1

aN−1

O bN

aN
ΘN−1

ΦN−1ΦN−1

2N

ΦN(x, y) :=
∑

w∈W1,N

xs1(w)ys2(w) = Φ1(ΦN−1(x, y),ΘN−1(x, y)).

Each 2N−1- triangle is congruent to GN−1 → Φ2
N−1ΘN−1.
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Recursions (Obtained from fractal structure)

(ΦN(x, y),ΘN(x, y)) = 　　　　　　　　

(Φ1(ΦN−1(x, y),ΘN−1(x, y)),Θ1(ΦN−1(x, y),ΘN−1(x, y))).

Two-dimentional dynamical system.

Iterations of (Φ1,Θ1)
(x, y)→ (Φ1(x, y),Θ1(x, y))→ (Φ2(x, y),Θ2(x, y))→ · · ·

Φ1(x, y) = x2 + 2xy + y2 + 2x2y + x3.
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Asymptotic behavior of the dynamical system.
∃ D ∈ R2

+ 　　open
As N→∞,

(ΦN(x, y),ΘN(x, y))→


(0, 0), (x, y) ∈ D
(xc, 0), (x, y) ∈ ∂D
(∞,∞), (x, y) ∈ R2

+ \D.

(xc, 0): the unique fixed point in R2
+ \ {(0, 0)}.

(Φ(xc, 0),Θ(xc, 0)) = (xc, 0),　 xc = (
√

5 − 1)/2

xc

D

x

y
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Fixed-ends model
A special choice for (x, y) gives the fixed-ends model.

ΦN(e−β, e−2β) =
∑

w∈W1,N

e−βL(w), ΘN(e−β, e−2β) =
∑

w∈W2,N

e−βL(w)

　　　　　∃βc; (e−βc , e−2βc ) ∈ ∂D 　βc = 0.8276 · · ·
λ = 2xc + 3x2

c　　　　 (as in Thms 1 and 2)

xc

D

x

y
y = x2

(e−βc, e−2βc)
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Also for 3-dim Sierpinski gasket, ν and the scaling limit
are known. (T.Hattori, Kusuoka, K.H. 1993)　
→ 4-dimensional dynamical system.
　

G0 G1

　
Some results for general d-dim SG’s. (T.Hattori, Tsuda
2002)
m-gasket (Kasuga , master’s thesis)
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2. Loop-erased random walk

Simple random walk on a graph
Jumps to a nearest neighbor with equal probability.

　

O
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2. Loop-erased random walk

Simple random walk on a graph
Erase loops from SRW chronologically.

　

O

LERW is self-avoiding, but the distribution is different
from SAW. (Lawler 1980)
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Sierpinski gasket
Physicists knew (growth exponent, D.Dhar, A.Dhar
(1997))
　　　ν = 1/dLERW = log 2/ logλLERW = 0.83 . . .

λLERW = (20 +
√

205)/15.

Mathematicians proved (the existence of the scaling limit
and) (2014)

dLERW = logλLERW/ log 2.

However, E[|w(n)|2] ∼ n2/dLERW ?　open!　
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Notations
△Oab : a unit triangle. FN= 2−NGN a graph with edge
length 2−N. 　Sierpinski gasket　 F = ∪∞N=1FN

F1

a

bO O b

a

F2
O b

a

F3

1
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2-1. Erasing-larger-loops-first model (ELLF)

ZN : Simple random walk on FN, starting at O and
stopped at a.

a

O bF1

a

O b

w1 w2
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a

O bF1

a

O b

w1

Two conditioned simple random walks on FN from O to a.
PN : the path measure of SRW not via b.
P′N : the path measure of SRW via b.
For example, (note Z1(0) = O,Z1(L(w1)) = a)
P1[w1] = P[ Z1(i) = w1(i), i = 0, 1, 2, · · ·L(w1) ] 　　　
= ( 1

2 )2( 1
4 )4/( 1

2 ).　　　　　　　　　　　　　　　　　　　　
　　　　　Conditioned
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Loop erasure from random walks on F1 (chronological).

　

w Lw = w′

−→

a

O b
F1

a

O b

L : Loop-erasing operator.
P̂1 = P1 ◦ L−1, P̂′1 = P′1 ◦ L−1 : LERW measures
( P̂1[w′] is the probability to get a path w′ as a result of
loop-erasure.) Infinitely many paths result in a same path by L.

These probabilities can be calculated directly.
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P̂1 = P1 ◦ L−1
1 : LERW measure (SRW not via b) 　

　 w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

P̂1[w1] =
1
2
, P̂1[w2] = P̂1[w3] =

2
15
,

P̂1[w4] = P̂1[w5] = P̂1[w6] =
1
30
, P̂1[w7] =

2
15
,

P̂1[wi] = 0, i = 8, 9, 10.
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P̂′1 = P′1 ◦ L−1
1 : LERW measure (SRW via b) 　

　 w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

P̂′1[w1] =
1
9
, P̂′1[w2] = P̂′1[w3] =

11
90
,

P̂′1[w4] = P̂′1[w5] = P̂′1[w6] = 2
45 , 　(b can be erased)

P̂′1[w7] =
8
45
, P̂′1[w8] =

2
9
, P̂′1[w9] = P̂′1[w10] =

1
18
.
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(A)　Erasing-larger-loops-first rule (ELLF model)

　

a

O b

a

O b

1

　
a

O b

Erase loops with diameter in (1/2, 1] =⇒ Erase loops
with diameter in (1/4, 1/2] =⇒ Erase loops with diameter
in (1/8, 1/4] =⇒ · · · →　Recursions　　　
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Erasing-larger-loops-first model (ELLF)　 (not

chronologically)

Step 0. Step 1.

O

a

b

Qww

a

O b　

SRW on FN Coarse-grained walk
(2−N - lattice) (SRW on F1)　

42



Erasing-larger-loops-first model (ELLF)　 (not

chronologically)

Step 0. Step 1.

O

a

b

Qww

a

O b

the largest-scale
loop
(diam ≥ 1/2)

SRW on FN Coarse-grained walk
(2−N - lattice) (SRW on F1)　
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Erase loops from Qw Restore fine structure
Step 2. Step 3.

a

O b

a

O

LQw w1

b

w1 has no loops with diam > 2−1.

bO

a

The original path

　

44



Each 2−1 triangle is similar to FN−1. Apply Step 1–3 to
each path segment and erase largest-scale (larger than
1/4) loops. Repeat until the path has no loops.

a

O

w1

Similar to FN−1

Similar to FN−1

b　
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Resulting loop-erased path　(After repetition of Q and L
on F1)

　O b

a

Lw

L : Loop-erasing operator

P̂N = PN ◦ L−1 : LERW path meas.
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Generating functions

ŴN : The set of loopless paths on FN from O to a,

P̂N = PN ◦ L−1, P̂′N = P′N ◦ L−1 : LERW path measures

ΦN(x, y) =
∑

w∈ŴN

P̂N(w) xs1(w) ys2(w),

ΘN(x, y) =
∑

w∈ŴN

P̂′N(w) xs1(w) ys2(w), x, y ≥ 0.

Type 1

Type 2

s1(w) = ♯{2−N-triangles of Type 1}, s2(w) = ♯{Type 2}.
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Recursions

ΦN+1(x, y) = Φ1(ΦN(x, y),ΘN(x, y)).

ΘN+1(x, y) = Θ1(ΦN(x, y),ΘN(x, y)), N ∈N.

Φ1(x, y) =
1
30

(15x2 + 8xy + y2 + 2x2y + 4x3).

Θ1(x, y) =
1
45

(5x2 + 11xy + 2y2 + 14x2y + 8x3 + 5xy2).
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Mean matrix of the number of triangles

M =

 ∂
∂xΦ1(1, 1) ∂

∂yΦ1(1, 1)
∂
∂xΘ1(1, 1) ∂

∂yΘ1(1, 1)

 = [ 9
5

2
5

26
15

13
15

]
The larger eigenvalue

λLERW =
1
15

(20 +
√

205) = 2.2878 . . . .
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2-2. Answers
Thm. 3. (STW, HM, 2014)

YN : LERW on FN. YN(λN
LERW t ) converges uniformly in t

a.s. as N→∞ to a continuous process Y on the SG.

Thm. 4. (STW, HM 2014)

Y is almost surely self-avoiding. (Not obvious)
The path Hausdorff dimension is
dLERW(Y([0,∞))) = logλLERW/ log 2 = 1.1939 . . . > 1 a.s.

Thm. 5. (Mizuno, K.H. 2014) (B)

ELLF LERW
d
= ‘standard’ LERW. (Not obvious)
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Thms 3, 4 were proved by two groups independently.
Shinoda, Teufl and Wagner used uniform spanning tree
and obtained more detailed properties of the limit paths.
Hattori, Mizuno used the erasing-larger-loops-first rule.

LERW and SAW belong to different universal classes.

dLERW =
log(20 +

√
205)/15

log 2
= 1.1939 . . .

dSAW =
log(7 −

√
5)/2

log 2
= 1.2521 . . .
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3. Self-repelling walks and their
loop-erasure

Consider paths O→ a. x > 0
Penalty u for sharp turns and returns to O. (0 ≤ u ≤ 1)

P1[w] ∝ uN(w)xL(w)

O b

a

w

u

u u

uu u

no u

N(w) = 6, L(w) = 8
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We can define a one-parameter family of self-repelling
walks recursively.

Thm. 6 (Hambly, T. Hattori, K.H. 2002)
The scaling limit exists and connects the Brownian
motion (u = 1) and the self-avoiding process obtained in
Thm. 2 (u = 0) continuously in u.

Thm. 7 (T. Hattori, K.H. 2004)

∀s > 0, lim
n→∞

log E[|w(n)|s]
log n

= sνu.

ν0 = νSAW , ν1 = 1/2.
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Applying the erasing-larger-loops-first rule to this family
of self-repelling walks, we obtain a new one-parameter
family of walks whose paths are self-avoiding.
The scaling limit exists.
For u = 1, it is the limit of the LERW in Thm. 3, and for
u = 0, the self-avoiding process in Thm. 1.
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4. Summary

We considered two basic questions:
(1) Displacement exponent
(2) Scaling limit
for three kinds of non-Markov processes on the SG:
1. Self-avoiding walks (SAW)
2. Loop-erased random walks (LERW)
3. Self-repelling walks (and their loop-erasure)
Approach:
(A) Find a model that yields recursions.
(B) Extract information on ‘standard’ models.

55



References
• B.M. Hambly, K. Hattori, T. Hattori, Self-repelling walk
on the Sierpinski gasket, PTRF, 124 (2002) 1-25

•　M. Shinoda, E.Teufl, S. Wagner, Uniform spanning
trees on Sierpinski graphs, arXiv:1305.5114

•　K. Hattori, M. Mizuno, Loop-erased random walk on
the Sierpinski gasket, SPA, 124 (2014) 566-585

khattori@tmu.ac.jp

56


