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Non-Linear Vibration Analysis of Plane Framed Structures
by Finite Element Method

Yukio MaEDA, Masa HavAsHI and Ken-ichi MAEDA

Department of Civil Engineering, Osaka University, Suita-city

In recent years, the finite element method has been extensively developed for
solving structural problems on the dynamic response of structural systems with mate-
rial and geometrical nonlinearities.

In this paper, four different procedures are newly proposed or reviewed for solving
non-linear equations of motion by piecewise linearization. Although these procedures
described herein are restricted to the geometrically non-linear vibration analysis of
plane framed structures, extended use of their basic algorithms may be possible in
the field of material nonlinearities and even in that of three-dimensional problems.

For justification of the methods proposed, the results of some numerical calcu-
lations are presented and compared with the ones obtained by the Newton-Raphson
iteration.

I. INTRODUCTION

Recent developments of high-speed digital computers and numerical analysis tech-
niques have enabled the finite element method even to find frequent application in the non-
linear vibration analysis of structural systems with material and geometrical nonlinearities.
An analytical solution of non-linear equations of motion is apparently introduced by a pure
iteration method for solving non-linear differential equations. This method, however, re-
quires a great number of iterations, and a lengthy operating time, at every time step in a nu-
merical integration. For this reason, the demand for reduction of an operating time, has
drawn attention of many investigators.

Piecewise linearization!=9) is one of the powerful method to answer the question. In
this technique, the equations of motion is formulated on the incremental basis by using a
linearized stiffness corresponding to conditions at the beginning of each time step in a nu-
merical integration. Consequently, it should be noted that the amount of time-increment
must be smaller than a value needed to prevent excess accumulation of numerical errors due
to linearization of a non-linear stiffness as well as truncation errors due to interpolation of
an inertia force. Namely, the degree of accuracy of the linearized stiffness, approximated at
each incremental time step, is the most closely related to rational reduction of an operating
time. Many reports on this type of study have been published up to date. Particularly, the
study done by J. H. Argyris et al.,)) in which high accuracy in the piecewise linearization
was achieved by use of a modified stiffness matrix instead of a tangential stiffness, is worth
noting. On the other hand, if an incremental form of the equations of motion enables the
application of a mode superposition besides a direct integration, the procedure is expected
to display its ability in some cases, as a quick and convenient method although incompletely
accurate. The study made by Nickel, R. E.% is one of its representative examples.

From the above discussions, in this paper four different procedures are newly proposed
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or reviewed for solving the non-linear equations of motion by piecewise linearization. Al-
though these procedures described herein are restricted to the geometrically non-linear
vibration analysis of plane framed structures, extended use of their basic algorithms may be
possible in the field of material nonlinearities and even in that of three-dimensional problems.

For justification of the methods proposed, the results of some numerical calculations
are presented and compared with the ones converged by the Newton-Raphson iteration at
every incremental time step. As numerical analysis techniques for a step-by-step integration
and for an eigen-value problem expressed in terms of large order banded matrices, the well-
known Newmark’s f-method?® and the combined Sturm sequence method by K. K.

Gupta? are adopted, respectively. Finally, from all the results, general features of the non-

linear vibration analysis of plane framed structures by the finite element method are dis-
cussed.

II. NON-LINEAR EQUATIONS OF MOTION

The non-linear equations of motion of a discretized continuum express an equilibrium
among dynamic forces with respect to system coordinates and time ¢. Thus, if an inertia force
is expressed in terms of the product of a nodal acceleration vector X(¢) and a constant mass
matrix M, the form may be written by neglecting damping force as:

RX(0)) = F(t) — M - X(z) (1)

where R(X(?)) is an iternal resisting force vector, considered to include the terms higher than
the second order of a nodal displacement vector X(¢), and F(¢) is an externally applied force
vector.

ITI. INITIAL INTERNAL RESISTING FORCE VECTOR
AND CHORDAL STIFFNESS MATRIX

It should be assumed that each member of a plane framed structure is straight and has
a uniform section, and then the relation between stresses and strains is linear.

With axial and transverse displacements, « and v, in a member coordinates, an initial
strain ¢ under an initially deformed state and its increment Ae are given by Eq. (2), corre-
sponding to a usual large-deformation analysis:

)

where subscripts of u, v, du and Av represent differentiation by x in the direction of the
member axis.
Then, the increment AU of the member’s initial strain energy U is given as follows:
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AU =E - vg“(b . Ae + %Aaz)di/

I
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where SU and 62U are the first and second variations of U, respectively.

Y (U) TQ“/'ASQ
(dv)

Fig. 1. End-displacements of member.

Now, on the well-established principle of the finite element method, it is necessary to
introduce shape functions. To completely exclude a rigid-body displacement of a member
from a value of the initial strain, the forms of Eq. (4), with the notations illustrated in Fig. 1,
are newly suggested in this paper and adopted:

U= I, « (I — 1),

v=(x-—%§~z+§>»Ta+(~§+Z;)”Tb,

Au:(}wz})edua—kfiszﬁub, @)

Av:(i %+%§;>wﬁva+(x-%§+?§)wﬁ0a
(%_%f)«mb+(~§+?§)w@b

where /; and / are a non-stress length of a member and its initially deformed one, respec-
tively.

Consequently, the increment 4 U of the strain energy, given by Eq. (3), can be expressed
as the function of an initial end-displacement vector #(0, 0, 7, /—1;, 0, 73,) and its increment

Au(du,, Av,, A0, duy,, Avy,, AG,) in the member coordinates under the initially deformed
state.
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The equations to connect an end-load vector to an end-displacement one at the end of
the incremental step may be derived by the stationary condition of potential energy as:

P+ Ap = {ky + ku(@) + K@)} < w + [{ky + 2k1(8) + 3hky(0?)}
+ {ky(du) + ky(4u)} + kyy(u, du)] -
= k(u) - u + k(u, Au) - Au (5)

where p and 4p are an initial end-load vector and its increment, respectively. Except that
parameters are qualitatively different from the previous ones, matrices &, and k, are the

E!QI‘Q! ﬁf@f CBﬂA QF‘(‘{\”A ﬂf\ﬂnﬁlﬁﬁ@!i" Q“"lﬁn@ﬁ(‘ matr ﬂf‘ﬁQ 'KFlQﬂPF‘fI‘IP’HXI R/{Ji’?"lv E’ [Nﬂ /ﬂiﬂ\ 'HG Qi’\ﬂ‘ili‘i
(=58 DA IANE ATV DREALLEVIS LG L IWYD,y LD ACLLA s Sby g ey L3

in Appendix.
From the characteristics of the shape functions adopted in this paper, it is evident that:

p=p) = k@ -u (6)

Hence, if the initial end-displacement vector # of the member is calculated corresponding to
an initial nodal displacement vector X(¢), an initial internal resisting force vector R(X(¢)) can
be easily evaluated by summarizing the initial end-load vector p(#) of all the members, as
multiplied by each coordinate transformation matrix ¢(X(z)).

Moreover, Eq. (5) may be rewritten from the above consideration as

Ap = k(u, Auw) « Au. @)

This equation is found to express the relation between the incremental end-load vector and
the incremental end-displacement one. Namely, a matrix k(#, 4#) is the so-called chordal
stiffness matrix of the member. If the increment of the member’s rotation angle is small
enough, this chordal stiffness matrix appears to give required accuracy. Then, by neglecting
Awm, this matrix is simply checked for agreement with the tangential stiffness matrix. Simi-
larly, the chordal stiffness matrix of the entire structure, K(X(¢), 4X(2)), is evaluated by sum-
marizing the matrix k(#, dw) of all the members, as multiplied by each coordinate trans-
formation matrix e¢(X(¢)). But, it should be noted that the increment 4X(¢) of the initial nodal
displacement vector X(¢) is generally unknown at the beginning of the incremental step.

IV. PIECEWISE LINEARIZATION PROCEDURE

Using the initial internal resisting force vector R(X(¢)) and the chordal stiffness matrix
R(X(@), 4X()) derived in the above chapter, four different piecewise linearization procedures
are newly proposed or reviewed for solving the non-linear equations of motion written by
Eq. (1) in Chap. 2.

1) Incremental Form of Equations of Motion

To carry out a numerical step-by-step integration, it is necessary that the equations
of motion be formulated in the incremental form. Furthermore, by applying a piecewise
linearization technique, the incremental form of Eq. (1) is linearized as follows:

M. AXD w1 + KX, + Z AXp ;) o AXp yry = AFp(ty44) (8)
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where 4X, .., and 4X, ., are incremental nodal acceleration and displacement vectors
caused by an incremental externally applied dynamic force vector 4Fy(f,.,) at the (n+1)
-th incremental time step, respectively. And X is a nodal displacement vector caused by an
externally applied static force vector Fj.

The left-hand second term of this equation is the one corresponding to a linearized

_ 7
increment or an internal resisting force vector. Namely, a matrix K(Xg -+ >} 4X,;)isa
=1 '
linearized stiffness mairix to be evaluated by conditions at the beginning of the incremental

time step.

2) Linearized Stiffness Matrix
According to various forms for the above-mentioned linearized stiffness matrix, the

piecewise linearization technique described herein can be classified into the following four
methods:
(1) Chordal Stiffness Method (CSM)

_ n ~ n "
K(Xs -+ ;Z..l AXn,i) = K(XS + ;é} Ail),iﬂ ﬁX*D,nﬂ) 9

where
AXg,n—!—l - AXD,% - 2AXD,n - AXD,%—I?
= 3Ang,’n - 3AXD,7L—1 + AXD,%-—ZB
pens 3AXD,’"« - 44':§XD’,’,L_1 + BAXD,C’&-‘Z — AXD,%—Z’W

(2) Tangential Stiffness Method (TSM)
-, n _ - i
R(Xs + 33 4%5) = R + 35 4%, 0) 10
= =
(3) Additional Pseudoloads Method (APM)

K@’s + ?’ng AXD,i) ° AXD,%-H = K(Xs, 0) - AXD,?H»I + ANﬁ,nﬂ (11)
where
ANE 1y = ANp = 24Np ,, — ANp s,
= 34Np, — 34Np s + ANp 5,
= 34Np,, — 44Np 4y + 34Np -y — ANp s,

n n—1
AND,% = R(Xs + ; AXD,@“) - -R(Xs + %AXDJ)

- K(Xsa 0) - AXD,’IL‘
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(4) Linearized Stiffness Method (LSM)
K, + 2, 4Xp,) = KX, 0). (12)

In these equations, the contents of a matrix £ or a vector R is the same as the chordal
stiffness matrix or the initial internal resisting force vector in the above chapter, respectively.

The method CSM in connection with an approximated chordal stifiness matrix seems
to be proposed probably for the first time by the present study. From every reason, this
method is expected to give a high degree of accuracy, comparing with the usual method
TSM, and to enable highly rational reduction of an operating time on account of the de-
crease of a total number of incremental time steps, corresponding to the diminution of ac-
cumulation of numerical errors due to linearization. Moreover, comparing with the mod-
ified stiffness method by J. H. Argyris et al., it is obvious that this method will give a high
degree of accuracy and efficiency in a numerical computation process.

On the other hand, the third and fourth methods, APM and LSM, apparently enable
to apply a mode superposition besides a direct integration. Whence, as a quick and con-
venient method although incompletely accurate, these methods are expected to display their
abilities in some cases, for example, systems with small nonlinearities and ones with a static
load which forms a high ratio of its total loads.

3) Residual Force Vector
A residual force vector Re(t,), given by

n 7 . n
Re(t,) = Fg + % AFp(t) — M » 3, AXp ; — R(Xg + Z‘; 4Xp ) (13)
= =1

=1

is a measure to judge how well equilibrium condition is satisfied at a time 7,. In order to
satisfy equilibrium condition up to a required tolerance at the end of each incremental time
step, it may be necessary to use iterations.

On the occasion of using a piecewise linearization technique, this residual force vector
Re(t,,) is usually added to an incremental externally applied force vector 4Fy(t,,,) at the
next, namely, (n+ 1) -th incremental time step. However, because an operating time needed
for evaluating this residual force vector occupies a rather high rate of its total operating time,
it may be said that its addition is one of the largest trouble.

For this reason, if the accuracy of a linearized stiffness matrix makes it possible to pre-
vent excess accumulation of numerical errors without considering the residual force vector,
by using a time-increment smaller than a value needed not to produce immoderate trunca-
tion errors due to interpolation of an inertia force, the effect on reduction of a total operat-
ing time by a piecewise linearization technique can become even greater.

V. NUMERICAL EXAMPLES

1) Cantilever Beam with Static Load
In order to justify the proposed approximated chordal stiffness mairix, a cantilever
beam subjected to a static load as illustrated in Fig. 2 is calculated in this section. To its
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numerical calculation, an ordinary incremental method for a static large-deformation anal-
ysis by using a tangential stiffness matrix, as well as by using the proposed approximated
chordal stiffness matrix, is applied. By comparing the results by the two methods with the
ones converged by the Newton-Raphson iteration at every incremental step, accuracy of
the proposed approximated chordal stiffness matrix will be examined.

]
]

F e Lo
Fig. 2. Cantilever beam.

a) Conditions for numerical calculation (input data)
The cantilever beam is divided into ten and a vertical concentrated static load P applied
at the free end is increased with a constant increment 1.0 ¢ up to 10.0 7.
The following values are used for a sectional area, 4, a moment of inertia of the mem-
bers, 7, and a Young’s modulus of their material, E,:

4 = 0.0001m?  I=0.000001 m*  E =21 x 107 #m>

On the other hand, in the Newton-Raphson iteration, allowable errors in a conver-
gence criterian, ¢; and & for displacements and forces, respectively, are specified as
gq = & = 107 at every incremental step.

b) Results of calculation (output data)

According to various methods, relative accumulation errors in vertical displacements
at the free end at each incremental step in comparison with converged values are shown in
Table 1 and, for reference, the number of iterations by the Newton-Raphson iteration is
added to this table, in which a suffix * indicates a value calculated without considering a
residual force vector.

Table 1. Relative Accumulation Errors in Vertical Displacements at Free end
According to Various Methods.

Calculation method Converged No. of
Step No. Tangential stiffness Chordal stiffness value iter.
2 0.00662% 0.00347 0.00568* 0.00347 0.03171 4
4 0.01028*% 0.00127 0.00791* 0.00079 0.06324 5
6 0.01610% 0.00053 0.00731% 0.060032 0.09439 4
8 0.02120%* 0.00024 0.00600* 0.00024 0.12501 5

10 0.02530* 0.00013 0.00400* 0.00013 0.15493 10
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2) Two-hinged Parabolic Arch Subjected to Moving Load
For justification of the methods proposed, a two-hinged parabolic arch subjected to a
uniformly distributed moving load as illustrated in Fig. 3 is calculated. The results are com-

UNIFORMLY DISTRIBUTED MOVING LOAD

MM I L T

T
P}

-
l

e e e | =200

Fig. 3. Two-hinged parabolic arch.

pared with the ones, classified as “EXACT”, converged by the Newton-Raphson iteration
at every incremental time step. As numerical analysis techniques for a step-by-step integra-
tion and for an eigen-value problem expressed in terms of large order banded matrices, the
well-known Newmark’s f-method and the combined Sturm sequence method by K. K. Gupta
are adopted.

a) Conditions for numerical calculation (input data)
The two-hinged parabolic arch is divided into twenty and the intensity of a uniformly
distributed static load corresponding to the own weight of the members is 12.5 ¢/m.
At a speed V of a uniformly distributed moving load, 5.0 #/m, two cases, 160 km/h and
80 kgm/h, are performed.
The following values are used for a sectional area, 4, a moment of inertia of the mem-
bers, I, and a Young’s modulus of their material, E,:

A=05m% [1=05m4 E=21x 107 t/m”

Not to produce relative truncation errors greater than 0.01, four time-increments, 4¢ =
0.03 sec, 0.04 sec, 0.05 sec and 0.06 sec, are used. But in the case of the speed V' = 80 km/A,
only one time-increment At = 0.06 sec is used. And a value of f in the Newmark’s f-
method is 0.25.

On the other hand, in the Newton-Raphson iteration, allowable errors in a convergence
criterion, ¢; and & for displacements and forces, respectively, are specified as &; = & =
1074 at every incremental time step.

b) Results of calculation (output data)
According to various methods, relative accumulation errors in maximum vertical dis-
placement in comparison with “EXACT” values are shown in Table 2, in which a suffix*
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indicates a value calculated without considering a residual force vector. And in the case of
the speed ¥V = 160 km/h, relative accumulation error versus time-increment diagram is
shown in Fig. 4.

Table 2. Relative Accumulation Errors in Maximum Vertical Displacements
According toVarious Methods.

Time- “BXACT” Calculation method
Speed increment values Direct integration Mode superposition
e 15 {cec) {im) SRhA TORA ADPRA TS
(km/k) (sec) (m) CSM TSM APM LSM
0.0019# 0.0996%* 0.1587* 0.3360%
6.03 1.1842 0.0001 0.0001 101587 0.1792
0.0038* 0.1314% 0.1590* 0.3356*
0.04 1.1856 0.0002  0.0002 01500  0.1856
0.0053* 0.1594* 0.1577* 0.3337*
160 0.05 1.1838 0.0002  0.0004 0.1577  0.1925
0.0073* 0.1916% 0.1604* 0.3327*
0.06 11877 0.0004 0.0007 0.1604 0.2003
0.0008* 0.0322%* 0.0629% 0.2097*
80 0.06 0.5744 0.0001  0.0001 00629  0.0894
RELATIVE
ERROR
s3 - o 0
. [ s e o g s g oy
107 o~

O o without consid. res. force

@ e considering residual force

I | I 1 Time
0.03 0.04 0.05 0.06 -INCREMENT
( sec )
Csi e APM
______ TSM et LEM

Fig. 4. Relative accumulation error versus time-increment diagram.
(V = 160 km/k)
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Figure 5 and Fig. 6 are vertical displacement versus time diagrams at //4 point for the
time-increment A¢ = 0.06 sec in the two cases of the speeds V = 160 km/k and 80 km/A,
according to various methods without considering a residual force vector. In which curves
classified as ‘STATIC’ are the ones calculated by neglecting the effect of an inertia force.

D1sPLACEMENT

M
0.8

0.6
0.4

0.2
0.0

- 0.2 -

- 0.4

, Tive ( sec )

}STEP No.
\.' ll

'/

CsM, "EXacCT"

- 0.6 TSM
e —mems-—  APM
-08F S LSM —————— 'STATIC'
Fig. 5. Vertical displacement versus time diagram at L/4 point without
considering residual force. (F = 160 km/k, Ar = 0.06 sec)
D1sPLACEMENT
M
0.4
0 53 =
0|2 —
0.1 1 0
6.0 /\ ,@\
0.0k ! i ’ A fwx\g
'~ A4
- 0 ] 1
- O s 2
CSM, "EXACT"
- 035 =
R AN et APM
L 251 I N7/ ———— LSM ————'STATIC' ~

Fig, 6. Vertical displacement versus time diagram at L/4 point without
considering residual force. (V' = 80 km/A. 4¢ = 0.06 sec)

Furthermore, as the most important criterion for practice, the total operating time for
the time-increment 47 = 0.06 sec in the case of the speed ¥ = 80 km/A, according to various
methods, is shown in Table 3, in which a suffix * is the same as the above one.
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Table 3. Total Operating Time According to Various Methods.
(V = 80 km/h, 4t = 0.06 sec)

Calculation method

“EXACT” CSM TSM APM LSM
7'10” 2'05"* 2'01"* 0/58"* 026"
2!34” 2/30” ly()z” 0,59”

VI. CONCLUSION

From the results of numerical examples, the following conclusions may be drawn:

(1) Although the difference of the total operating time between the two methods is
hardly recognized, the method CSM, newly proposed by the present study, satisfies high
accuracy by adding the residual force vector in comparison with the usual method TSM.

(2) In the method CSM, the accuracy of the approximated chordal stiffness matrix
enables to prevent excess accumulation of numerical errors due to linearization without con-
sidering a residual force vector, by using a time-increment smaller than a value needed not
to produce immoderate truncation errors due to interpolation of an inertia force.

(3) From the practical point of view, the methods CSM and TSM are quick in calcula-
tion and accurate enough for the non-linear vibration analysis of actual plane framed struc-
tures.

Particularly, the method CSM without considering a residual force vector is the most
economical one because a total operating time of this method can be reduced to about 80 %,
of the one of the usual method TSM, unless a band-width of the approximated chordal
stiffness matrix increases to a considerable number.

(4) The methods APM and LSM are highly quick and convenient methods although
incompletely accurate. These methods are expected to display their abilities in some cases,
for example, systems with small nonlinearities and the ones with a static load which form a
high ratio of its total loads.
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Matrix &, (u, du):

where

A=

B =

C=

D=

F =

APPENDIX
o 0 0 ©0 0 0
B 0 —A C
E 0 —B D
k= 0O 0 0
SYMM., A —C
F

OEA

B [3(ty + 1) (dv, — Avy) + 7,2 40, « Iy + 17 = 4Gy -

3EA
14017 {127,(dvy — dv) — (7 — Tp) o 46, < Iy

+ (1 + ) > 4Oy < L},
3EA
1401, {127,(dv, — dvp) + (1, + 1) » 40, - [,

+ (T — Tp) 40y < L},

EA
m {B(Ia + Tb)(Ava - Avb) - (3Ta - 27"?)) ® Aga ¢ 10
+ (2t — 31p) « 40y - Ly},

140 { 3(t, — 1) (dvy — Awvy) + 38ty — 1) « 40, - [,

— (374 — 2%) - 40 - by},

EA
140 {3(t, — 1) (dv, — 4vy) + (21, — 373) - 40, + ],

— 3ty — 81p) - 40, - 0}'
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