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In recent years, effects of secondary stresses, which occur in framed structures
stiffened with non-wrapped parallel wire cables during erection, have become a mat-
ter of great importance in the field of quality control.

In this paper, more accurate formulae for non-wrapped parallel wire cable
members, subjected to secondary stresses due to clamping of bands and local bending
of wires, are proposed in order to be directly introduced into a program of an ordinary
displacement method for finite displacement analysis. Then, the formulae are
extended to enable more efficient analysis without an increase in the number of nodes.

Furthermore, justification of the formulae and efficiency of the program are
verified by the results of some numerical applications, and general features of the

effects are discussed,

I. INTRODUCTION

As of late, the effects of secondary stresses, which occur in framed structures stiffened
with non-wrapped parallel wire cables during erection, have become an important problem
encountered in the evaluation of the safety factor of cables and also standard displacements
of superstructures. Therefore, more accurate estimation of the effects is nowadays regarded
as a matter of major importance from the viewpoint of quality control of erected works.

Since Wyatt? performed a basic investigation to systematize such complicated pheno-
mena, studies in this field have been done by many researchers,” among which a study done
by Nishimura ez al.® is especially interesting. They presented an analytical method of plane
framed structures stiffened with non-wrapped parallel wire cables during the erection, taking
into consideration secondary stresses due to clamping of bands and local bending of wires,
based on Wyatt’s theory. In addition, adequacy of the method was verified experimentally.
However, since rotations and elongations were treated as unknowns by neglecting longitu-
dinal displacements their method, which needs a closing circuit condition consisting of
member locations depending upon a structural type, is different from an ordinary displace-
ment method and is not always accurate. Moreover, that method is inefficient under certain
circumstances. In that method, a parallel wire cable between consecutive points, at which
other cables are connected and hanger members are anchored, is divided into two kinds
of members, namely a cable member (a freely slipping part) and band members (clamping
band parts on both sides), and an increase in the number of nodes is inevitably required.

On the other hand, according to the extensive development of finite element method
and finite displacement theory, programs for ordinary displacement methods have come
to be applied most generally to geometrical non-linear analyses of ordinary plane framed
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Fig. 1. Non-wrapped parallel wire cable member.

structures. Consequently, the authors® already dealt with several kinds of cables which
stiffen plane-framed structures, and studied the effect of sag or sliding support by introduc-
ing the proposed formulae into a program for an ordinary displacement method.

This paper presents the following contents.” First, by using the finite element method
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and the finite displacement theory, more accurate formulae for a freely slipping part,
subjected to secondary stresses due to clamping of bands and local bending of wires
which are based on Wyatt’s theory, are proposed in order to be directly introduced into a
program for the ordinary displacement method for ordinary plane-framed structures. Then,
the formulae are extended to the ones for a non-wrapped parallel wire cable member by
combining with clamping band parts on the both sides, for the development of more efficient
analysis without an increase in the number of nodes. Next, justification of the formulae and
efficiency of the program are examined using some numerical examples. Finally, from the re-
sults of the finite displacement analysis of an actual framed structure stiffened with non-
vsrapped paraﬂei wire cable members duung erection, the authors attempt to find general

II. DEFINITION OF SECONDARY STRESSES

The theory herein is based on the following assumptions in addition to usual ones:

1) A non-wrapped parallel wire cable member with a non-stressed length L, illustrated
in Fig.1, contains a freely slipping part and clamping band parts on both sides between con-
secutive points at which cable members are connected and hanger members are anchored.

2) In the freely slipping part with the non-stressed length /;, wires are not only exten-
sible but also flexible, and frictional resistance between wires is negligible.

3) The clampine band parts with non d lengths. /
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flexible.

4) The shape of any cross section remains constant, and the deformation due to own
weight is negligible.

Then, in the freely slipping part with Young’s modulus E, and sectional area 4,, the
authors define the tension 7"and the bending moment M(x) with the following equations ex-
pressed by the notations shown in Fig.1, which are based on Wyatt’s theory in the same
way as in Reference:

T = E,A,-1/(x), 1)
M(.X,') =M, + Q'JC - T V()C) = M, + Mw(x) (2)

In Eq.(2), the moments, My and M, (x), are very secondary ones due to clamping of bands
and local bending of wires, respectively, as follows:

My =

, — tan d,), M (x) = —EI,-v'(x), 3)
where
*{c - %Aw})ga [rz = ﬁw'jiw (4)
i=1

and A4,, I, and n, are the area, the moment of inertia, and the total number of wires, re-
spectively.
Hence, the primary stress o, due to T, the maximum secondary stress oy due to M, which
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Fig. 2. End-displacements and end-forces.
arises in the extreme wire, and the stress o,(x) due to M, (x) which arises in the extreme fiber

of each wire, illustrate r1 in Fig.2, are described

_T . _M D—d M) d
Ut_Acs 09 = —!c 2 9 w(x> .{,, 2° (5)

where D and d are the diameters of the cross section and of each wire, respectively.

III. FORMULAE FOR FREELY SLIPPING PART

Consider a non-wrapped parallel wire cable member of which a coordinate axis is ex-
pressed as au X*-axis, illustrated in Fig.3, under a deformed state. Further, let the system
coordinates of both ends be (X,,, ¥,0) and (X0, Y3o) under the undeformed state.

In the freely slipping part, by supposing the x-axis paralle to the x'-axis in order to
completely exclude a rigid-body displacement, the notatmns in Fig.3 exactly agree with the
ones in Fig. 1.

Now, on the basis of a well-established principle of the finite element method, it is
necessary to introduce shape functions. In this paper, the following forms involving hyper-
bolic function terms may be adopted:

u(x) = c;x + ¢,

. 6
v(x) = Cs cosh g,x + C,sinh g, x + Csx + Cs. )
It is not possible to apply a solution of the equation obtained by expanding the latter equa-
tion in a series which will apparently diverge under the following characteristic condition of
the non-dimensional parameter g,/,:
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Fig. 3. Primary and secondary stresses.

2
Gl = [ 25> 1. ™

On the other hand, displacements and strains will be related to each other by the cur-
vature p,(x) and the axial strain ¢,,(x) of the i-th wire, which may be given by the following
equations on the basis of finite displacement theory:

plx) = —v"(x),

— 8
&q4(x) = u'(x) + _;T V() + (tan @, I tan eb)yin (@)

where the third term in the latter equation is the characteristic one.

Consequently, omitting the higher order terms, an equation connecting the force vector
S to the displacement vector d, at both ends of the freely slipping part, may be derived by
the stationary condition of potential energy as
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f=4d)d= (ko + ki(d))-d, ®
where
Ma: T 3 r r
f=1{- Q, My}, (10)
d { Uas Vas tan @a: Up, Vo, tan @b} s

and the matrices, k,, and k,(d), indicate the linear matrix and the non-linear matrix includ-
ing the terms of the first degree with 4, respectively.
Substituting the following equations into Eq. (9),

y — ty, =1 — I, |
b oi (11)

vy — v, = 0,
and approximating the rearranged equation by effectively using the following condition,
sinh g/, = cosh g,l, > g/, > 1, {12)

the newly proposed stiffness matrix &(d) for the freely slipping part is simplified and con-
cretely written as follows:

EAfl, 0 0 —EAJfl, 0 0

0 0 0 0 0
£l 0 0 —E.JJ/
) fh fh
EAN, 0 0
0 0
SYMM,. E I/,
0 4 B 0 —4 C
D E —4 —D E
N F —B —F G (13)
0 A —C
D —E
SYMM. F
where
) E.A,
A= — BN ml {tan 0, + tan G,),
. EA 1 _E 4, 1
= P tan ¢,, C = Tl tan Gy, "
_ Ed,, . E,A
D = 2[% (1 ZO)? E"‘“ 2[0 gﬂ)i
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E,A, 1

F==5 ek

(1 - 20)5 G = 0.

Moreover, denoting a tangential stiffness matrix with 4&(d), an incremental form of
Eq. (%) is shown as follows:

Af = Ak(d)- 4d = (k, + 2k,(d))- Ad. (15)
Then, by setting E.7, and g,/; equal to zero and infinity respectively, the newly pro-
posed tangential stiffness matrix 4(k)d can be checked with the one for ordinary cable mem-
bers.

Iv. COMBINING WITH CLAMPING BAND PARTS

Extending the newly proposed formulae to combine a freely slipping part with clamping
band parts on both sides, the end-force vector F in the system coordinates and the vector
f* in the member coordinates for a non-wrapped parallel wire cable member, illustrated in
Fig.3, may be derived as follows:

F=¢.f*==¢.ecf, (16)
where

F: {Tas Qas ﬂm Tbs ;ba ﬁb}Ta

. (17
f*:{Tf" f?MjSTgk?Q;“BA‘/!gk}TS
and the coordinate transformation matrices, &, e, and ¢, are concretely expressed as
- cosR —sinR O
Cab o .
€= |, €, =|sinR cosR O
0o &,
0 0 1]
1 0 0 0 0 0
0 1 0 0 0 0
—,sin@¥* I,cos6F 1 0 0 0
e = 1
0 0 0 i 0 0 (18)
0 0 0 0 1 0
0 0 0 Il,sin@f —l,cos6Ff 1),
cosa —sina O
rcab 14 .
€ = L } €, =|sing cosg O
o gvjab

0 0o 1)

Morever, an incremental form of Eq. (16) may be approximated by the following
form:



196 Y. MAEDA et al.
AF = AK(D)-AD = &(e-c-Af + de-c-f), (19)
where the vector
D = {U,, V,, tan 8,, U,, V;, tan O} 7 (20)
indicates the end-displacement vector in the system coordinates. Therefore, the extended

tangential stiffness matrix 4K(D) for the non-wrapped parallel wire cable member is readily

P A T P 3 S-S mr ranrdinateas ag Fallawe

ODtaInea 111 LilC ::yot@ul COOrainaics as i0iiOWS:

AK(D) = ¢le-c-Ak(d)-c"-eT + des} &, @D
where
Ade., o
de, = { 7 }
o Adeg ],
0 0 0
0 0 0
Aefa - .
0 l,cos BF(T cosa — Q sin a)
+ 1, sin 0F(T'sina + Qcosa)/, (22)
0 0
0 0 0
Aefb - ;
0 I, cos 0(T cos e — O sin )

+ I, sin 0F(T'sine + Q cos a)

()

and the second term is inherent to rotations of the band parts.

Hence, if definite values are assigned to /, [, [, R, «, 6,, 0,, 0¥, and 6} from com-
putation results of the end-displacement D, it goes without saying that the newly proposed
and extended formulae in this paper can be evaluated easily. However, the following trans-
cendental equations from the geometrical compatibility condition must be solved in ad-

vance:

Xa :Xa() + Ua; Ya = Yao + Vm
Xy = Xy + Uy, Yo = Yo + Vi,
L:%/(Xb"Xa)Z—*_(Yb—' Ya)zs

Y, — Y,
X, — X,

tan 0F = tan(@, + R, — R), tan 6 = tan(®, + R, — R),
\/lL — (I, cos 6F + I,cos 6})} 2
—(l,sin 0¥ + I,sin 6})} 2,

—(ia sin 8% + 1, sin 6f)
L — (I,cos 8¥ + I, cos 6F)

tan R =

tan o =
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tan 0, = tan(0} — a), tan 6, = tan(6; — a),

_EA.,, E A, ) 5
T= _—l (I—1)+ ———~2gn A (tan?@, + tan®d,),

__E ’; (I — I)(tan 6, + tan 0,),

za = Inﬁ[

EA {(Tcosa — Qsina)cos 0F

+ (T'sina -+ ¢ cos e) sin 67} }

I, = z,,oti +E1A {(Tcos @ — Qsin a)cos 6}

+ (T'sina + Q cos a) sin 05} ]
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(23)

It has been assumed that the clamping band parts are extensibly different from the usual

rigid bodies.

V. EXAMINATION OF JUSTIFICATION AND EFFICIENCY

For the purpose of verifying the justification and efficiency of the newly proposed and
extended formulae, a numerical example for a non-wrapped parallel wire cable-structure
with bands, illustrated in Fig.4, is computed by introducing these formulae into a program
for an ordinary displacement method. In the computation, the principal dimensions are
summarized in Table 1, and two loading cases are employed as shown in Fig.4. The ordinary
analysis neglecting the secondary stresses (Analysis-1) as well as the proposed analysis are

performed.

The secondary stresses at the right end of the freely slipping part of the member

rLZ L =1.411m } L L L — L ]
@ s ® 5 @ 4 @ s s |
1 = ——— e - —e—F %7
1~7
l J J HoDE Ao, ' J ' MEMBE’R wo. } )
Lz/2 | 1=1.267 m Z
T T T T T T T T
la=1p=0.072 la b lq 1p 1a b la b '
P=1.000¢
CASE-1
e | 1 Al | | | | [ | | | e
T = 42,610 ¢ oo Vl . 7
CASE-2 N = 0.930 tm
e [ NG ] N - = N )
T . RN T

Fig. 4. Cable-structure.
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Table 1. Summary of dimensions.

NC. COF WIRE | ny, 217
— -
DIAMETERS |5t 0. 000
Ay (m?) | 0.004261
SECTTONAL Te  (m") | 0.156x10°°
VALUES I, (m*) | 0.666x10°
By (t/m?) 2, 0x107

are illustrated in each case in Fig.5. The displacements at the nodes 3 and 4 are tabulated
for each case in Table Z. For reference, the analytical and experimental values quoted from
Ref. 3 are included in Fig.5 and Table 2. Then, Table 3 shows the number of iterations using
the Newton-Raphson method. In this table, the values obtained by using the tangential
stiffness matrix with no addition of the proper term to rotations of the band parts are given
for comparison.

From the results of the numerical computations, it can be seen that the newly proposed
and extended formulae are accurate enough for practical usage and satisfy a higher degree

CASE-1
@
¥
D d — N
i
O ANAL.
T ® FXPE.

-1.0 0,0 1.0 x10%(t/m®) -2,0 -1.0 0.0 1.0 2.0

Fig. 5. Secondary stresses for each case.

Table 2. Displacements for each case.

V_ (m) 0 (rad)
T NODE 3 | NODE 4 | NODE 3 | NODE 4
ANALVST5-1 0.0749 | 0. 0298 S—
CASE-1 |PROPOSED ANAL.] 0.0134 ] 0.0263 | —= | —=
ANAL.| 0.013 | 0.096 | —= [ —=

Ref-3) Tewprl 0.015 10027
PROPOSED ANAL.| —0.0010 ] 0.0 0.0104 | 0.0358
CASE-2[p o3y JAWAL 20.007 | 0.0 0.011 | 0.024
Ret. EXPE.| 0,001 | 0.0 0.009 | 0.026
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Table 3. Number of iteraiion.

T INCREMENTAL wo. or
- STEP ITERATION
ANALYSIS-1 1 5
CASE-1| PROPOSED S P
ANALYSIS
[Wo-ADDITION 1 15
PROPOSED . -
CASE-2| ANALYSIS }
[NO-ADDITION 7 32

of convergence. Moreover, it seems that these formulae can be easil

nraoram naeing the ardinary dienlaceament m
Progranm BsIng Ul Ordinary Gispiaceimnent
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an increase in the number of nodes.

VI. FINITE DISPLACEMENT ANALYSIS OF ACTUAL
STRUCTURE

As a representative example of an actual framed structure stiffened with non-wrapped
parallel wire cable members, a suspension bridge, of which superstructures are under erec-
tion, illustrated in Fig.6, is treated, and principal dimensions of the model are summarized
in Table 4. The erection process is divided into six steps as shown in Fig.6, in which each
horizontal bar indicates the range of suspended structures already erected. After completion
of the erection, the suspended structures are loaded uniformly throughout the spans by the
deck weight.

Primary and secondary stresses arising at the specific points in the main cable are traced
at each step, as shown in Fig.7. Then, the horizontal and vertical displacements at the ex-

treme end of the suspended structures already erected in the center span are tabulated at

TOWER, @ p

AN [T MAIN CABLE
88.843 ,T”T [ T T
!

-
— T HANGER [
——— 1 i Il
v LR P N AN N P N PR 2 N G N

I
B X VAR
250 m \ ) STIFFENING GIRDER 270 m

i
ERECTT é]V HINGE

L ;L

(STEP-0) | FREE CABLE
STEP-1 —_— EXTREVE
STEP~2 : - » e 8 ’
STEP-3 : . ' - V . j/
STEP-4 | - . 5
STEP-5 | . N
STEP-6 | L i
COMPL,. |

|

Fig. 6. Actual structure during erection.
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Table 4. Dimensions of members.

SPAN SIDE |CENTER
NO. OF WIRE | my 11,557
d (mm) 5,170
DIAMETERS D (mm)| 618.000
Ae  (m”) 0.2426
MATN | Ie  (m°)| 0.580x107> |
CABLE |In __(m')| 0.405%x10°° |
B (t/m*) 2.0%x107
Ay (m?) 0. 0061
SECT. |HANGER | Ip __ (m’) 0.0 ]
VALUES Ep (t/m") 1.4x107
e LAg__ (m*)10.0943]0.1223
S T (m*)11.9102]2.4764 |
GIRDER [0~ /2T 5. 1x10"
At (m*)]0.7526,0.8995
TOWER | It  (m")12.1027,3.7013
Bt (t/m?) 2.1x10"

Fig. 7. Primary and secondary stresses at each step.

Table 5. Displacements at each step.

(m)
NEGLECTED CONSIDERED
SECONDARY STRESSES|SECONDARY STRESSES
HORIZ. VERTI. HORIZ. VERTI.
STEP-1 ~-1.613| 4.347 -1,675| 4.197
STEP-2| -1.5809| 1.535 -1.493| 1.488
STEP-3| -0.836| -2.716 ~-0,829| -2.729
STEP-4| -0.193| -3.445 ~0.191| ~3.4563
STEP-5 0.023| ~-0.688 0.023] -0.696
STEP-6 0.0 -1.087 0.0 ~-1.086
COMPL. 0.0 0.0 0.0 0.0
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each step in Table 5. For reference, the values obtained by neglecting the secondary stresses
are given in this table.

From the results of the finite displacement analysis, it can be judged that the secondary
stresses have large values not only in the main cable nearest the tower, but also in the one
near the extreme end of the suspended structures already erected. Moreover, the effects of
the secondary stresses are clearly observed in displacements at the extreme end of the sus-
pended structures already erected.

VII. CONCLUSIONS

From the afore-mentioned results o
sions may be drawn:

(1) The newly proposed and extended formulae are accurate enough for practical use,
and the tangential stiffness matrix satisfies a higher degree of convergence by involving the
proper term to rotations of the band parts.

(2) It seems that these formulae can be easily introduced into a program using the
ordinary displacement method without an increase in the number of modes, so that the
finite displacement analysis of plane framed structures, which are stiffened with non-
wrapped parallel wire cable members during the erection, can be performed more accurately
and efficiently.

('%\ It is confirmed that the secondarv stresses due to cla pgng of bands and local

ARd AL viilie A D ] LA UIOWY R

bendmg of wires are not negligible at the time of evaluating not only a safety factor for
cables, but also of standard displacements of superstructures, and some countermeasures
are required to ensure quality during erection.

(4) Because there is a great possibility that analytical solutions of certain design prob-
lems due to the effects of secondary stresses will be indispensable for the plan of actual
framed structures stiffened with parallel wire cables, programming of the formulae in this
paper is expected to be accepted for wide application in no distant future.
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