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In recent years, the finite element method has been extensively developed for
solving many kinds of problems on the structural behavior of complicated systems
with geometrical non-linearity.

In this paper, the authors deal with four kinds of analyses of cable members
which stiffen plane-framed structures. In addition to cable members which can be
replaced simply by axial members, the analyses include discussions of the effect of
cable sag, the effect of cable sliding over a roller and the effects of both on cable
members.

Non-linear cable equations, stiffness matrices and tangential stiffness matrices
for cable members are newly proposed, extended or examined in order to directly
introduce the Newton-Raphson method and the incremental procedure for the
large deformation analysis of general framed structures. Then, for justification of
these solutions, the results of numerical applications to some kinds of cable-stiffened
structures are described and discussed.

I. INTRODUCTION

The recent development of high speed computers and numerical analysis techniques has
enabled the finite element method to apply to the analysis of complicated structures with
geometrical nonlinearity. In particular, the studies! -7 of non-linear cable and frame inter-
action of cable-stiffened structures have developed rapidly, and those achievements have
become a center of attention although they are still at an incomplete stage. The purposes of
the present study are to investigate the problems in detail and then to propose more accurate
and advantageous methods for the analysis of cable-stiffened structures.

In this paper, the authors deal with four kinds of analyses of cable members which
stiffen plane-framed structures. In addition to cable members which can be replaced simply
by axial members, the analyses include discussions of the effect of cable sag, the effect of
cable sliding over a roller and the effect of both on cable members.

By replacing a sagging cable member with linking axial members, the effect of sag is
taken into consideration fairly well. The approach, however, requires the calculation of a
tangential stiffness matrix with a great band width in general. Therefore, the greatest diffi-
culties in the method are to occupy a great part of the storage area of a computer and to
spend long operating time. As alternative methods, Ernst,! Livesley,23 Tang4 and Lazar®
each proposed a modified elastic modulus of a sagging cable, and on examination it was
found that all of them agreed precisely. However, judging from the assumption used in the
theory, the modified modulus holds only in limited cases, for example, systems with small
non-linearity and cable members with a fairly low sag ratio. Moreover, Chu® proposed a
different analytical procedure using a modified elastic modulus along with a non-linear cable
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equation. The method is one of the suitable methods of inquiring closely into the effect of
sag. But, in order to be more reliable and reasonable, an actual tagential stiffness matrix
should be used instead of the modified modulus according to the non-linear cable equation.

On the other hand, regarding a roller-supported cable member, Lazar® proposed a
stiffness matrix by considering the cable as a particular bilinear element. Therefore, the
subject for future studies is to make possible its general application in a similar way to
Lazar’s method, and then to introduce a tangential stiffness matrix. Furthermore, the
problem of a roller-supported cable member, which requires that the effect of its sag be
taken into consideration, should be solved. But no reports on this problem have apparently
been published to date.

On the aforesaid four different problems of cable members, nonlinear cable equations,
stiffness matrices and tangential stiffness matrices will be newly proposed, extended or ex-
amined? in this paper, in order to directly introduce the Newton-Raphson method and the
incremental procedure®? into the large deformation analysis of general framed structures.
Then, for justification of these solutions, the results of numerical applications to some
kinds of cable-stiffened structures will be presented. Finally, from all of the results, a general
feature of the non-linear analysis of cable-stiffened structures by the finite element method
will be discussed.

Non-linear algebraic equivalents to equilibrium equations, for the large deformation
analysis of general plane-framed structures, are obtained in terms of system coordinates as:

R(D) =F (1

where R(D) is the internal resisting force vector and contains both linear and non-linear
terms in the nodal displacement vector D, and F is the externally applied force vector.

Most solution procedures of the non-linear equations (1) are based on the Newton-
Raphson method and the incremental procedure. For example, employing the mixed
method, linearized equations to be calculated, under the (i + 1)-th interation step at the n-th
incremental sted, are written as follows:

AK(D}) « ADi*t = ARl )

where 4D is the incremental nodal displacement vector and 4Re, called the residual force
vector, is previously derived by calculating the following equations:

ARei = F, — R(D}). 3

Namely, the solution procedure requires, in general, the tangential stiffness matrix 4K(D)
and the internal resisting force vector R(D), expressed under any deformed state. The accu-
racy of both influences the dependability and reasonableness of the solution procedure.

[II. FORMULATION FOR CABLE MEMBERS

This chapter is devoted to non-linear cable equations, stiffness matrices and tangential
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stiffness matrices for four different models of cable members, which are introduced into the
solution procedure briefly explained in Section II. It goes without saying that internal re-
sisting force vectors are derived from the former two.

1) Cable Member Replaced by Axial Member
Because studies on this model have been reported by many researchers, the formula-
tion for this model is omitted here.

- H=Hy,

Fig. 1. Sagging cable member.

2) Sagging Cable Member

It may be assumed that the total dead weight of a cable member, instead of uniform
distribution along its length, is nearly distributed uniformly along its total span. Namely,
a curve which a perfectly flexible cable member takes, when freely suspended between two
supports under its deformed state, can be a parabola.

(1) Non-linear cable equation and internal resisting force vector

Consider a cable member suspended as shown in Fig.1 between two supports ¢ and b
under its deformed state and loaded so that a vertical load w per unit length of the span can
be constant. Let H be the horizontal component of cable tension; then it will be expressed
from the parabola principle as follows:

wi2

H="gr @

Therefore, equations of the sag ratio n, the length C and the elongation AC of the cable
member are given by the following expressions, respectively:

n= —];-, (5)

et A,
C‘fm/”(zv) ax
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+ loge {(x/l + (4n + m) + 4n + m). (V1 + (4n — m)?

+ 4n — m) ] (6)

and
P H dy\2 wi 16
_ AT ar _ 1Y e 2
AC"LEAP+LMHdX"%EAE+Sn+m) M
where
o) _
m= 7, W = wl (=const).

Then, denoting the length of the cable member with Cy under its undeformed non-
stress state, the compatibility equation is written as follows:

C — (Co + 4C) = 0. (3)

Substituting Eqgs. (6) and (7) into Eq. (8), and multiplying by n, the following non-linear
equation @(n) for the sag ratio » is obtained:

D(n) = %[(‘“’l + m) VT + (dn + m)® + (4n — m) VT + (4n — m)?

'Floge¥¢]‘*(4"'F”ﬁ24“4”'+’”XV1-+(4n——nﬂ2~k4n—-in%}

wi 16
—_— — 72 21 —
8EA(1+3” +m) nCo = 0. (9)

This equation is what the authors call the cable equation. Namely, if a definite value is
assigned to / and J, Eq.(9) will be a function of the sag ratio n.

Consequently, from the values of /, 6 and n, the member end-force vector f(H,, V,, Hp,
V) is calculated by the following equations:

W W m
Ha—“g’;a Va-——”é‘(l‘{"z};)s
/ m
Hy =, m_—gﬁm@}

Moreover, the internal resisting force vector R(D) under its deformed state is easily calculat-
ed by summarizing the member end-force vector f of all members.

(2) Tangential stiffness matrix

The compatibility equation (8) is approximated as follows, by expanding Eq.(6) in a
series and omitting the terms higher than the fourth order for the small sag ratio n:
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(1+m2+»}§n2)-—&):0 (1D
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Since the increment of the sag ratio, 4n, is in relationship with 4/ and 49, the differentia-
tion of Eq.(11) gives the following expression:

An = — 8;12]{ [[Co {i ,_Q;C_Q\ (O\* 4w (1) /ﬁi\zﬁ ;@(1\4{£\2n2141
woLL T\ LI\L] “3eA\L]\L) "V 3\L]\L] "]

where

CEA (1612, UBEA(L\S 0
k= /[1"3(;1)”“* 3W(L)nl’ L=+ oe

Similarly, by differentiating Eq. (10), the following equations are given:

I \
ﬂH(l“_Alb:g;;éAnv
W (13)
mn n
AVa= = AVy = o (man + ' 41 = 5 1)

where Af (4Hgy, AV, AHyp, AV3) is the increment of the member end-force vector.
The increment of the member end-displacement vector, 4d(4U,, AV,, AUy, AV}), is
related to 4/ and 46 by the following equations:

AUy — AU, = 4

(14)
AVy — AV, = 46.

Therefore, by eliminating the increment of the sag ratio, 4n, from Egs. (12) and (13),
and by substituting Eq. (14) into the equations, the relation between the increment of the
member end-force vector, 4f, and that of the member end-displacement vector, 4d, may be
derived as:

Ak(n) » Ad = Af (15)

in which the tangential stiffness matrix 4%&(n) in system coordinates under its deformed state
is concretely shown by the following form:

Ak(n) = C « Ak* . CT (16)

where 4k*, shown as follows, corresponds to the tangential stiffness matrix in member
coordinates:
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and C, shown as follows, corresponds to the coordinate transformation matrix:

'O cosa, — sina
C = { } C' = { } (18)

o sin@, CcoOsSa

Hence, the tangential stiffness matrix of the entire structure, 4k(D), is calculated by sum-
marizing the matrix for each member, 4k&(n).

3) Roller-supported Cable Member

It is assumed that the effects of frictional resistance between a cable and rollers and
eccentricity due to the diameters of rollers supporting the cable member at some supports
may be negligible. Then, suppose that the total dead weight of the cable member may be
approximately concentrated at the supports instead of being distributed. In other words, in
the case of this model, suppose that the effect of cable sag can be neglected.

Fig. 2. Roller-supported cable member.

(1) Stiffness matrix and internal resisting force vector
Consider that the form shown in Fig.2 is a configuration of the roller-supported cable
member in a deformed state. The cable member consists of axial elements, from the r-th to
the s-th, which are supported by sliding over rollers at the supports, from the g-th to the b-th.
By adding the following condition of continuity of the elements:
Nj=Njmi =N (j=rr+1,.:-,5-1), (19)

the compatibility equation of the cable member is written as follows:

8§ S
AL; = L 2
24l =g3 jgr g (20)

where N and 4L; are the tension and elongation of the j-th element, respectively.
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The member end-displacement vector d(Uy, Vg, Ug+1, Vo+1, - - ., Us, V3) is related to
the elongation 4L; by the following equation:

gqg:ahd 1)

where the vector ¢, shown as follows, is a kind of coordinate transformation matrix:

¢ = {—cosay, — sinay, (COS ar — COS ar+1), (SiN @y — SiD ar 1),

. . ., (cosas—1 — cosas), (8in as—1 — sin as), COS as, Sin s} 7. (22)

Thus, from Egs. (20) and (21), the tension N is related to the member end-displacement
vector d as follows:

N=k-cT.d (23)

where

k=FEA|> L.
i=r

Similarly, by using the transformation vector ¢, the relation between the member end-
force vector f(Hy, Vg4, Hyt1, Vati, . . ., Hp, Vp) and the tension N is given as:

f:N°£. (24)

Therefore, by substituting Eq. (23) into Eq.(24), the relation between the member end-
force vector f and the member end-displacement vector d may be derived as:

ko-d=Ff (25)

in which the stiffness matrix %o in system coordinates is concretely shown in terms of the
following expression:

ko=Fk-c-cT. (26)

Consequently, if a definite value is assigned to the member end-displacement vector 4,
the corresponding value of the member end-force vector f is immediately calculated from the
above equation (25). Moreover, the internal resisting force vector R(D) under its deformed
state is easily calculated by summarizing the member ene-force vector f of all members.

(2) Tangential stiffness matrix

By using the relationship equation expressed as:

Aaj = {Sil‘l aj (Auz- - Aui-}-]_) - COS§ a'j(éﬂ Vi — AV@+1)}/L]' (] =¥, r -+ 1, © e ey S) (27)

and by differentiating Eq. (22), the increment of the transformation vector, 4e, is related to



208 Y. MAEDA et al.

the one of the member end-displacement vectors, Ad(dug, Avy, Augt1, Avgr1, . . ., Aup,
Avy), as follows:

de =k Ad (28)
where
hr “"kr
— by (hr + }37‘%—1) — By
b — By (Brvr + Brro) — By
— ke (B4 k) —
— hy
1 [ sin2 — COS a; sin a;]
by = — :
Lj| —cos o sin a; cos? @

(G=rr+1,...,95.

The increment of the member end-force vector, Af (4H,, AV y, AHyr1, AVgrs, . . ., AHp,
A4V3), by differentiating Eq.(25) and neglecting higher-order terms, is given by the following
equation:

Af =(k<c+cT)« Ad + (k - ¢T - d) de (29)
Therefore, by substituting Eqgs. (23), (26) and (28) into Eq. (29), the relation between

the increment of the member end-force vector, 4f, and that of the member end-displace-
ment vector, 4d, may be derived as:

AR(N) « Ad = Af (30)

in which the tangential stiffness matrix 4&(N) in system coordinates under its deformed state
is concretely expressed by the following form:

AR(NY = ko + N + h. (31)

Hence, the tangential stiffness matrix of the entire structure, 4K (D), is calculated by sum-
marizing the matrix for each member, 4&(N).

4) Combined Cable Member

As a convenient and temporary method (although not completely accurate), the model
obtained by combining the above two cases of models, as explained in Fig.3, deals with the
roller-supported cable member taking into account the effect of its sag.
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Fig. 3. Combined cable member.

IV. NUMERICAL APPLICATIONS

For the purpose of verifying justification of the formulation in Section III, several nu-
merical examples of cable-stiffened structures are illustrated with calculation results in this
Section.

1) Individual Cable

In order to justify the examined non-linear cable equation for a sagging cable member,
an individual cable, subjected to an uniformly distributed load along its span as illustrated
in Fig.4(a), is calculated. At this calculation, an ordinary method is also applied by replac-
ing the sagging individual cable with linking axial members as shown in Fig.4(b). Then, by
comparing the two cases, an accuracy of the non-linear cable equation will be scrutinized.

4= 100,0

(a) Sagging Cable Member (b) Linking Axial Members

Fig. 4. Individual cable.

(1) Conditions for numerical application (input data)

In the calculation, the values of extensional rigidity £4 of the cable is assumed to be
0.00001, and 30° and 60° are taken for the angle of inclination .

To obtain the sag ratio f]I close to 0.2, which value has been said to be the upper limit
available for the assumption based on the principle of parabola, the uniformly distributed
load w is determined. Namely, at both angles, each load is increased with a constant incre-
ment 15.0 up to 75.0 or 1.0 up to 5.0.

On the other hand, in case of replacement with the linking axial members, the cable is
divided into two kinds of values, 20 and 40.
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(2) Results of Calculation (output data)

The sag ratio f]/ and the horizontal component of tension H are shown in Table 1. In
this table, numeral 20 or 40 indicates the number of division in case of replacing with the
linking axial members.

Table 1. Results of calculation.

Angle Load Sag Ratio Horiz. Compo. of Tension
o No. w S H Hao Hyo
1 150 0.11479 1633.3 1631.9 1633.0
2 30.0 0.14604 2567.7 2565.3 2567.1
30° 3 45.0 0.16859 33364 3333.3 3335.6
4 60.0 0.18701 4010.5 4006.7 4009.6
5 75.0 0.20293 4619.8 4615.4 4618.7
1 1.00 0.11430 109.36 109.25 109.33
2 2.00 0.14388 173.76 173.57 173.71
60° 3 3.00 0.16457 227.87 227.61 227.81
4 4.00 0.18099 276.25 275.92 276.17
5 5.00 0.19483 320.79 320.39 320.69

Although the difference e
to increase gradually as the value of the load increases, the former is in satisfactory agree-
ment with the latter.

Therefore, it can be assumed that the sagging parabolic cable also agrees very well with
an actual cable, and the examined nonlinear cable equation is accurate enough for practical

usage.

fu—

2) Cable-stiffened Tower
Calculations by the newly proposed, extended or examined formulae for the four mod-
els of cable members are performed for the analysis of a cable-stiffened tower illustrated
in Fig.5. As two cable members, X1 and X2, four models, namely, axial members, sagging
cable members, roller-supported ones and combined ones, are applied.

Roller
-Support

Fixed
Support

200.0

TI7TTITTIFTT £,
150.0 - 200.,0 1
o

Fig. 5. Cable-stiffened tower.
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Similarly, in order to justify these solutions for sagging cable members or combined
ones, calculation by replacing with linking axial members is carried out at the same time.

(1) Conditions for numerical application (input data)

The following values are used for sectional area, moment of inertia and Young’s modu-
lus, respectively:

Ac - 0,01,
A; = 1.00,

]c = 0.,0, Ec = 2.0 X 1079
I; = 10.0, E;=2.1 x 107

where suffix ¢ or ¢ indicates a value of the cable members or the tower, respectively.

The tower is divided into 20 parts and the horizontal concentrated load P applied at the
free-end and the uniformly distributed load w take the values, 500.0 and 1.0, respectively.

On the other hand, in case of replacement with the linking axial members, each cable is
divided into 30 parts.

(2) Results of calculation (output data)

For the four models of cable members, several values indicative of their structural be-
havior are shown in Table 2. Corresponding values in case of replacement with the linking
axial members are added in brackets.

Table 2. Results of calculation.

Cable Mem. Axial Sagging Roll.-Supp. Combined
Calculated Item Member Cable Mem. Cable Mem. Cable Mem.
at Free-End 2.82 1.93 2.84 1.96
Horiz. of Cable (1.93) (1.95)
Displ. at Top 1.40 1.17 1.06 0.95
of Tower tRY) (0.95)
Sag Xi-Cable .0 045 . 042
Ratio X2-Cable .0 050 .0 .048
Left 663 633 704 659
X1 Side 637) (663)
Right 663 752 704 777
Side (752) (779)
Tension Left 705 780 704 777
% Side (780) (779
Right 705 639 704 639
Side (643) (643)
at Fixed-End 21699 18103 16446 14743
Moment of Tower (18065) (14655)

In case of sagging cable members or combined ones, the calculation results agree very

well with those obtained by replacement with the linking axial members.

In the case of roller-supported cable members or combined ones, it has been found
that the converged values satisfy the condition of continuity and the compatibility equation
under its deformed state.
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Therefore, it can be assumed that the newly proposed, extended or examined formulae
are solutions appropriate for inquiring into nonlinear cable and frame interaction of several
kinds of cable-stiffened structures closely and advantageously.

V. CONCLUSIONS

From the results of the numerical calculations for cable-stiffened structures, the fol-
lowing conclusions may be drawn:

(1) Insofar as the assumption based on the principle of the parabola can be permitted,
the examined non-linear cable equation and the newly proposed tangential stiffness matrix
for the sagging cable member are accurate enough for practical use and, therefore, should be
accepted for wide application.

(2) By using the extended stiffness matrix and the newly introduced tangential stiffness
matrix, it is possible to analyze plane-framed structures stiffened with roller-supported
cable members fairly accurately and rationally; these have never been solved until the
present.

(3) As a convenient and temporary method until a complete one is found, the model of
a roller-supported cable member taking into consideration the effect of its sag, newly as-
sumed in this paper, will give fairly good accuracy in practical application. However, the
development of the complete method is a problem to be solved in the future.

(4) By directly introducing these solutions into the Newton-Raphson method and the
in cremental procedure, the non-linear analysis of plane-framed structures stiffened by cable
members becomes more reliable and reasonable than the previous analyses by the finite
element method.
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