論文 既存壁式プレキャスト鉄筋コンクリート構造耐震壁における 新設開口補強効果の実験的研究

和田 芳宏*1·見波 進*2·北山 和宏*3·高木 次郎*4

要旨:既存壁式プレキャスト鉄筋コンクリート構造建物の耐震壁に開口を設けた場合を想定した実建物の1/2 スケール直交壁付立体試験体を作製し,開口の有無,補強方法および転倒モーメントの割合を実験変数とし て静的載荷実験を行い,耐震壁の耐力,破壊性状等に及ぼす開口の影響と補強効果の検討を行った。転倒モ ーメントが大きい試験体では,耐力低下の主要因は開口,補強の有無に関わらず水平接合部の損傷であった。 転倒モーメントが小さい場合,無補強試験体は接合部の損傷により,補強試験体は壁のせん断破壊により耐 力が低下した。また補強試験体は無補強に比べ,耐力,剛性ともに向上し補強の効果が確認された。 キーワード:壁式プレキャスト鉄筋コンクリート構造,耐震壁,新設開口,耐震補強

1. はじめに

壁式プレキャスト鉄筋コンクリート(以下 WPC)構造の 住宅ストックは、高度経済成長期に建設された中層公共 住宅が多数存在する。これらの構造躯体は健全でありな がら、住戸計画が画一的かつ面積が狭小で現在の住要求 に対応できていない。そのため住戸規模の変更を伴う大 規模改修を行うことで、有効にストック活用することが 望まれる。現場打ち壁式鉄筋コンクリート構造建物につ いては田才らによる新設開口補強に関する研究¹⁾など数 多くなされている一方で、WPC 構造建物については坪井 らによる準実大試験体を用いた実験的研究²⁾など工法開 発段階における研究が 1960 年代から 1970 年代にかけて なされているが、既存の WPC 耐震壁に新たに開口を設 ける技術に関する研究はなされておらず、新設開口に関 する技術が未整備のため改修に対する制約となっている。 そこで、施工性が良く、建築計画上有益な既存 WPC 耐 震壁への開口設置技術の開発が求められる。

本稿では既存 WPC 造耐震壁に開口を設置することを 想定した実験を行い,地震時における耐震壁の耐力,破 壊性状等に及ぼす開口の影響と補強効果の検討を行う。

2. 実験方法

2.1 実験対象

WPC構造集合住宅のうち同タイプの棟数の多い地上5 階建て既存建物³⁾を実験対象とした。対象建物の2階壁, 上下階(1,3階)の壁の約1/3,2階と3階のスラブおよび 直交壁の一部を取り出して,1/2に縮小したものを試験 体とした(図-1(a),(b),(d))。ここで,2階の壁を対象と したのは,上下階にプレキャスト(PCa)壁が存在する一般 的な階で最も層せん断力が大きくなるためである。

2.2 補強方針

WPC 構造において耐震壁へ開口を新設した際の問題 点を考慮し、以下の2通りの補強方法を基本とした。

- (1) 新設開口両脇の PCa 板に上下階壁との接合部を設け, 転倒モーメントに対する耐力を向上させる。
- (2) 新設開口上部に補強梁を新設し、曲げ戻しの効果を 確保する。

これらの方法を,鉄筋コンクリート(RC)または鉄骨(S) を主体として補強を行うことで,耐震要素としての機能 を向上させる方針とした。また補強部分を開口設置階の みに限定することを目的として上下階と接続せずに鉄骨 で梁補強のみとしたのも計画した。

2.3 試験体

試験体一覧を表-1に示す。無開口試験体 W5 および 試験体名の末尾にSを付した対象階のみに開口を設けた 4体(上下開口無と称す)と、末尾に M を付した上下階と も開口を有する3体(上下開口有と称す)の合計8体であ る。製作は実建物と同様に上下階の PCa 壁板を接続金物 (セッティングベース,以後 SB と略す)の隅肉溶接によっ て接合し、間を敷きモルタルで充填し一体化した。図ー 1に試験体形状,配筋図,水平接合部,鉛直接合部詳細, 補強試験体の補強箇所の詳細を、表ー2に使用した材料 特性を示す。コンクリートの設計基準強度は PCa 板は 33N/mm², 接合部と補強部は 27N/mm² とした。実験日圧 縮強度を表-1中に併記する。設計基準強度に対し圧縮 強度が相当に大きくなっているが、実建物用のコンクリ ートを練り混ぜる実機を使用したためであると思われる。 試験体形状は上下に加力スタブを有し、壁長 1875mm(部材芯寸法), 直交壁長 850mm とした(図-1(a), (b))。PCa 壁板は厚さ 75mm, 壁筋は縦横筋共に 4 \ \ , 6 \ \

*1 首都大学東京大学院 都市環境科学研究科建築学専攻博士前期課程 大学院生(正会員)
*2 首都大学東京大学院 都市環境科学研究科建築学域 助教 博士(工学)
*3 首都大学東京大学院 都市環境科学研究科建築学域 教授 工博(正会員)
*4 首都大学東京大学院 都市環境科学研究科建築学域 准教授 Ph.D

図-1 試験体および接合部詳細

試験体	上下 開口	H (m)	補強	$_{P}\sigma_{B}$ (N/mm ²)	$_{\rm J}\sigma_{\rm B}$ (N/mm ²)	$_{\rm c}\sigma_{\rm B}$ (N/mm ²)	最大耐 正加力	カ(kN) 負加力	初期剛性 (kN/mm)	破壊 モード	備考	
W5 (無開口)		3. 47	無 RC	58.6	44.8	_	101	103	166	F	損傷は 2SLSB 周辺に集中	
N5S(無補強上下開口無)				67.0	48.0	-	105	110	53	F	3SLSB が破断	
C5S(RC 補強上下開口無)	無			58.0	55.2	74.4	154	139	190	F	補強接続筋を定着した上下階	
S5S(S 補強上下開口無)			S	66.3	45.7	-	124	117	97	F	の PCa 板に顕著な損傷	
B5S(S梁補強上下開口無)				50.2	59.5	-	113	106	64	F	損傷は 2SLSB 周辺に集中	
N5M(無補強上下開口有)	有	2. 2	兼	60.8	57.8	-	136	132	40	F		
C5M(RC 補強上下開口有)			RC S	52.8	78.8	74. 3	289	271	189	FS	PCa 板がせん断破壊し, 損傷が大きい	
S5M(S補強上下開口有)				51.1	52.4	-	220	235	101	S		

表一1 試験体一覧

H:2SL からの反曲点高さ 。σ。:実験日 PCa 板コンクリート圧縮強度 」σ。:実験日接合部コンクリート圧縮強度 σ。:実験日補強部材コンクリート圧縮強度 破壊モード (F:SB 破断, S:PCa 板せん断破壊, FS:SB 降伏後 PCa 板せん断破壊) 初期剛性:R=+0.025%時の割線剛性

衣一∠ 树科特庄											
鋼材	規格	使用箇所	σ_y	σ_{u}							
4φ	SWMB	PCa 壁板(縦横筋)	503	544							
6ϕ	SWMB	PCa 壁板 (縦横筋)・スラブ	527	586							
D10	SD295	PCa 壁板 (外周部) SB 接筋・鉛直接合筋	362	502							
D6	SD295	補強柱・梁のせん断補強筋	335	509							
D10	SD345	補強柱・梁の主筋	392	576							
D16	SD295	S5S 補強接続筋	340	514							
PL-3.2 *	SM490	SB 鋼板	322	429							
PL-4.5	SM490	SB 鋼板	329	492							
PL-6 *	SM490	補強梁スチフナ・ S5S 定着鋼板	344	462							
PL-12 *	SM490	開口脇溝形鋼と 梁を接続する鋼板	299	454							
[-75x40x5x7 *	SS400	開口脇溝形鋼	304	461							
[-125x65x6x8 *	SS400	開口上部梁	334	475							

++ 1/1 ++ ++

 σ_{y} :降伏応力度 (N/mm^{2}) σ_{u} :最大応力度 (N/mm^{2}) ※:ミルシート値

交互を 100mm 間隔でシングル配筋とし、PCa 床板は厚さ 60mmで6oを100mm間隔でシングル配筋とした(図-1 (d))。接合部の詳細を図-1(e), (f)に示す。開口幅は 475mm, 高さは補強方法によって異なる。N5S, N5M(無 補強試験体)は開口補強筋を設けていない(図-1(c))。

RC 補強試験体の補強部詳細を図-1(g)に示す。RC 補 強試験体は開口脇の縦方向の RC 補強柱に加え,開口上 部の梁補強を行った。直交壁と補強梁は定着していない。 なお C5S(RC 補強上下開口無)では2階スラブ下に RC 梁 を増設し、そこに開口脇の補強柱の主筋を90度折り曲げ 定着させた。C5M(RC 補強上下開口有)開口脇補強柱はス ラブを貫通させ、上下のスタブに定着した。

S 補強試験体の補強部詳細を図ー1(h)に示す。E-E' 断面図, K 詳細図に示すように S 補強試験体は開口脇を 壁厚と同じ断面せいを有する溝形鋼で補強した。S5S(S 補強上下開口無)では溝形鋼を鉄筋を介し定着用鋼板と 接合し, 定着用鋼板をボルト締めすることで上下階の壁 と接続した。開口上部に補強梁を設けずに上階壁に接合 することで,無開口の上階壁に補強梁の役割を担わせ, 曲げ戻しの効果が得られることを期待した。S5M(S補強 上下開口有)について開口脇補強材はスラブを貫通させ, 上下のスタブに定着し、補強梁とは溶接接合した。B5S(S 梁補強上下開口無)は補強部分が当該階で収まる補強法 とし,開口脇補強材の上端は補強梁と溶接接合されてい るが、下端は2SL で止め下階に接続していない。

2.4 加力方法

加力装置を図-2に示す。試験体のねじれを防ぐため

水平ジャッキを左右1機ずつ取り付け,一方を変位制御 (作用水平力 Q1),他方をこれと同値となるように荷重制 御(Q2=Q1)とした。鉛直荷重については初期状態(水平荷 重 Q=Q1+Q2=0)時に長期荷重(D=106kN)を導入し、それ に付加させる形で水平荷重Qに比例させて転倒モーメン トに相当する圧縮および引張の付加鉛直力Vを載荷した。 無開口および上下開口無試験体では「既存壁式プレキャ スト鉄筋コンクリート造建築物の耐震診断指針」4)に則 り建物頂部までの高さの 2/3 に反曲点があると想定した 転倒モーメントが作用するものとし、上下開口有試験体 ではこれらに比べ反曲点高さを低くし水平せん断力に対 する転倒モーメントの割合を小さくした。上下開口有試 験体について、転倒モーメントを小さくしたのは、開口 上部の梁のせん断力の累積によって生じる耐震壁への転 倒モーメントが梁の剛性と耐力に依存することを考慮し たためである。しかし、補強効果の比較の観点からは、 補強有りと無しの場合で加力形式が異なることは望まし くないと判断しこれらの平均的な値とした。図-2の右 図に試験体に作用するモーメント分布を示す。(A)が無開 ロおよび上下開口無試験体に,(B)が上下開口有試験体に 対するものであり、反曲点高さが試験体の 2SL からそれ ぞれ 3.47m および 2.2m の位置に相当する。

2.5 載荷履歴

載荷履歴について最初のサイクルは水平荷重制御とし 水平力 20kN で正負1回,以後は変位制御とした。2 サイ クル目以降の水平変位履歴は層間変形角を R(%)として, 振幅が R=0.025, 0.05, 0.1, 0.2, 0.33, 0.5, 0.67, 1, 2

となるような漸増正負繰返しとした。R=0.025%のみ 1 回,以後各 2 回ずつ繰返した。変形角 R は上スタブ中央 の水平変位を下スタブ上面からの距離(L=2160mm)で除 した値とした。

3. 実験結果

3.1 破壊性状

(1) PCa 壁板ひび割れ状況

試験体ごとの最終ひび割れ状況を図-3に示す。直交 壁のひび割れついては、いずれの試験体についても接合 部周辺に集中し、その他横ひび割れや部分的な圧壊が発 生したが耐力低下の主要因ではなかった。

転倒モーメントが大きい場合の試験体ではPCa壁板の 損傷は主に接合部に集中し,加えて開口有の場合は圧縮 側で斜めひび割れ,引張側で横ひび割れが発生した。し かし,いずれも試験体の耐力低下の要因ではなかった。 接続筋補強を行った試験体(C5S,S5S)では,補強筋の定 着部である上階あるいは下階の壁に顕著な横ひび割れが 発生した。これは試験体が曲げを受けた時,接続筋が引 き抜かれ,定着していた補強梁や定着板を介し壁板に引 張力が生じたためであると考えられる。なお梁補強試験 体(B5S)の補強鉄骨梁下の斜めひび割れの多くは初期ひ び割れであり,載荷中においても大きなひび割れには伸 展しなかった。

上下開口有の場合,無補強試験体(N5M)は斜めひび割 れの他に開口上部梁状のPCa壁板に縦ひび割れが発生し たが,耐力低下の要因ではなかった。補強試験体(C5M, S5M)は補強により耐力が高くなったため,PCa壁板がせ ん断破壊したことで,最終的な損傷が大きかった。

(2) 水平接合部(SB)

転倒モーメントが大きい場合の試験体と、N5M は SB

が破断した。SB 破断とは引張側 SB の鋼板同士の溶接の 破断,または鋼板に溶接した定着用鉄筋の破断を指す。 この SB の溶接の損傷は偏心した形状(図-1(e)水平接 合部詳細)になっていることにより発生したと考えられ る。SB の損傷,破断は多くの試験体の耐力に対し支配的 であった。なお C5M, S5M では SB の損傷は小さかった。

(3) 鉛直接合部

鉛直接合筋については S5M を除く全試験体で R=0.1% 程度で降伏した。転倒モーメントが大きい場合は,鉛直 接合部に大きな引張力が作用し横ひび割れが発生後の鉛 直接合筋の降伏,破断に至った。一方,転倒モーメント が小さい場合は,せん断力が卓越するため鉛直接合部と PCa 壁板の間にせん断ずれが発生したが,鉛直接合筋の 損傷は軽微であった。

(4) 補強部材

補強試験体についてその補強部材の破壊状況を述べる。 C5S では補強柱の主筋が柱脚で降伏し,輪切り状のひび 割れがいくつか発生したが,耐力低下の主要因ではなく, ひび割れも顕著ではなかった。S5S では補強材の定着部 である 2SL 下,3SL 上の定着鋼板周辺のひび割れが R=0.5%から拡幅し,それに伴い定着板がずれ始めた。な お補強鉄骨材は降伏しなかった。B5S も補強鉄骨材は降 伏せず,損傷は見られなかった。C5M,S5M とも PCa 壁板のせん断ひび割れが拡幅したことで膨張し,直交壁 と補強柱が面外に曲げ変形をした。また C5M について は補強柱の引張によって発生したと考えられる輪切り状 のひび割れが多数発生した。

3.2 荷重変形関係

試験体ごとの荷重変形関係を図-4に示す。以下に試 験体ごとの最大耐力とそのときの変形角,耐力低下の要 因について述べる。

W5の正加力時最大耐力はR=0.20%時の101kNであり, このとき 2SL の引張側の SB は部分的な降伏であった。 よってR=0.33%のサイクル時も耐力が上昇すると考えら れたが,R=0.32%時に SB の隅肉溶接に亀裂が発生し耐 力が低下した。以降直交壁を含む引張側 SB 隅肉溶接に 順次亀裂が入り,次第に隅肉溶接の破断に至り,耐力が 段階的に低下した。負側加力時最大耐力は R=-0.20%時 の103kN であり,このとき正側と同様 2SL 引張側 SB の 降伏は部分的であったが,R=-0.5%に SB に亀裂が発生 するまで耐力低下は緩やかであった。このように正,負 加力時ともに耐力低下の主要因は SB 溶接の亀裂,破断 であったが,正側は隅肉溶接量の不足により,負側と比 較して耐力低下が顕著だった。

N5Sは正, 負加力時ともに2SL上のSBがR=0.16~0.5% で, 3SLのSBも0.7%程度で降伏しR=1%時に最大耐力 105kN, 110kNとなった。最大耐力は2SLのSBが降伏 した後に, 3SLのSBが降伏したことで発生したと考え る。耐力低下の要因は正加力時におけるR=1.39%時に発 生した3SLのSB溶接破断であった。

C5S は 2SL の SB が R=0.16~0.33%で降伏した。最大

耐力は R=0.5%時の 154kN, R=-0.33%時の 139kN であり, 2SL の SB 降伏後で最大耐力に達したと考える。なお耐 力低下の要因は正,負加力時ともは R=0.5%以降に順次 発生した 2SL の SB の溶接の破断であった。

S5S は正, 負加力時ともに最大耐力は R=0.67%時の 124kN, 117kN であり, 耐力低下の主要因は R=0.67%時 に発生した 2SL の SB 溶接の亀裂あるいは鉄筋の破断で あった。

B5S は正, 負加力時ともに 2SL の SB が R=0.2~0.67% で降伏し, R=0.67%時に最大耐力 113kN, 106kN となっ た。また R=0.67%のとき 2SL の SB の溶接に亀裂が入っ て以降耐力が上がらなくなった。さらに R=0.73%のとき 2SL の SB の鉄筋が破断した。これによって大きく耐力 が低下したが, SB 溶接は一部の損傷にとどまった。

N5M は最大耐力は正側加力時 R=0.5%のときの 136kN, 負側加力時 R=-0.67%のときの 132kN であった。正, 負 加力時ともに 2SL の SB は R=0.25~0.67%の間に順次降 伏に至った。また R=1%時に SB の溶接に亀裂が入り耐 力が低下し始めるまで各サイクルのピーク時耐力はほぼ 一定を保った。

C5M は最大耐力が R=0.5%のときの 289kN, R=-0.67% のときの 271kN であった。正, 負加力時ともに最大耐力 時において 2SL の SB はすべて降伏していた。PCa 板は R=0.05%時から斜めひび割れ数多く発生し, その後せん 断破壊に至った。このことから C5M の破壊モードは SB 降伏後の PCa 板のせん断破壊と考える。

S5M は載荷終了まで正加力時に引張となる鉛直接合筋とSB がほとんど降伏しなかった。最大耐力は R=0.5%のときの 235kN, R=-0.5%のときの 220kN であった。正, 負加力時とも R=0.1%時から壁板に斜めひび割れが発生し, 次第に拡幅しせん断破壊に至った。このことから S5M の破壊モードは PCa 壁板のせん断破壊とした。

4. 考察

4.1 無開口壁の耐震性能

無開口壁について第二次耐震診断⁴⁾に則り,曲げ終局 時のせん断力 *Q_{mu}*を算出した。*Q_{mu}*は引張鉄筋とみなす 鉄筋の総断面積に降伏応力度と中立軸からの距離を乗じ たものと,軸力による傾斜復元力を合算して求めた。使 用した材料特性を用いて算出した *Q_{mu}* は 83kN であった。 W5 の実験結果と比較すると第二次耐震診断による無開 口耐震壁の終局耐力の評価は実験の最大耐力の 8 割程度 とやや過小である。

4.2 開口設置の影響

N5Sの荷重変形関係はW5と比較すると最大耐力はほ ぼ同じものの,無開口時に比べ開口を設けた場合はスリ ップ性状を呈し,エネルギー吸収能力が劣ることが分る。 また初期剛性も無開口時の3割程度に低下した。

4.3 補強の効果

接続筋補強を行った C5S, S5S は N5S に比べ剛性が 3.6 倍, 1.9 倍, 耐力が 1.5 倍, 1.2 倍と向上した。その一方 で補強接続筋を定着した上下階の PCa 壁板に損傷が集中 した。このことから補強部材の定着方法に改良の余地が あると考えられる。補強が当該階で収まる方法とした B5S では, 耐力は N5S と同等であったが, エネルギー吸 収能力の改善がみられたことから,開口設置前後で耐力 とエネルギー吸収能力を確保するための方法として有効 であると考えられる。

C5M, S5M は N5M に比べ剛性が 4.7 倍, 2.5 倍, 耐力が 2.1 倍, 1.6 倍と向上し, この点で補強効果は確認でき

た。しかしその一方で耐力が高くなることで PCa 板がせん断破壊し,最終的に損傷が大きくなった。

4.4 等価粘性減衰定数(heq)

各サイクルの等価粘性減衰定数 h_{eq} を算出した。正加 力時2回目のheaを最大耐力の9割以下に低下するまで について図-5 に示す。試験体によって弾性限が異なる ため、heq は層間変形角との関係で単純に比較することは 出来ないが、0.2%時で比べるとW5とN5Sではheaは約 5 割となっており、開口設置によりエネルギー吸収能力 が低下していることが分る。上下開口無試験体について 層間変形角 0.33%時では、補強試験体は無補強の約 1.6 倍大きく、エネルギー吸収能力において補強効果が確認 できた。特に B5S については剛性, 耐力に関しては補強 の効果は小さかったものの, エネルギー吸収能力に関し て有効であることが分る。上下開口有試験体については 層間変形角0.2%時に無補強と比べ, RC 補強では1.3倍, S 補強では 1.7 倍であった。RC 補強は S 補強と比べ, 剛 性・耐力ともに高かったことから, RC 補強は強度抵抗 型, S 補強は靭性型の補強方法であるといえる。

5. まとめ

本実験で得られた知見を以下に示す。

- 第二次耐震診断による無開口耐震壁の終局耐力の評価 は実験の最大耐力の8割程度とやや過小評価である。
- 2)転倒モーメントが大きい場合は開口を設けても耐力は ほぼ差がなかったが、剛性が大きく低下し、また履歴 曲線が逆S字型となりエネルギー吸収能力も低かった。
- 3)転倒モーメントが大きい場合は補強により剛性,耐力 ともに向上し接続筋補強の効果があることが確認でき た。しかし、補強接続筋を定着した上下階のPCa壁板 の損傷が顕著で、定着方法に改善の余地がある。
- 4)鉄骨梁のみの補強は耐力とエネルギー吸収能力を確保 するための補強方法として有効である。
- 5) 転倒モーメントが小さい場合, RC 補強, S 補強それ ぞれの補強効果が確認できたものの,補強により水平 せん断力が高くなり, PCa 壁板がせん断破壊し最終的 な損傷が大きかった。

謝辞 本研究は国土交通省「建設技術研究開発助成制度」(研究 代表者:小泉雅生)の補助を受けた。また実験実施にあたり堀富 博氏(シグマ建築構造研究所)よりご助言いただいた。

参考文献

- 山崎智博,張彦龍,田才晃他:既存壁式構造における新設開 口の補強に関する研究,コンクリート工学年次論文集,vol.27, No.2, pp.1171-1176, 2005
- 2) 坪井善勝,加藤六実,平賀謙一:壁式プレキャスト鉄筋コン クリート構法に関する研究(その1)総括,日本建築学会論文 報告集号外, p.254, 1966.10

3) 今泉麻由子他:既存壁式プレキャスト鉄筋コンクリート構造 集合住宅の耐震性能と開口新設後の性能評価手法に関する研 究,日本建築学会大会学術講演梗概集, C-2, pp.655-656, 2009.8

4)日本建築防災協会:既存壁式プレキャスト鉄筋コンクリート 造建築物の耐震診断指針,第2版3刷,2008