巧真 2*

慎司 4*

義行 6*

石川

岸田

村田

部分的に高強度化した鉄筋を用いた鉄筋コンクリート柱梁部分架構の耐震性能評価							
(その4 実験概要)			正会員	〇村上	研	1*	同
			同	山谷	裕介	- 3*	同
			同	北山	和宏	÷ 5*	同
鉄筋コンクリート	柱梁接合部	部分高強度	化鉄筋				
ヒンジリロケーション	柱梁曲げ強度比	接合部降伏	破壞				

1. はじめに

鉄筋コンクリート (RC) 骨組において, 柱と梁の曲げ 終局耐力の比(柱梁曲げ耐力比)が1に近い場合,柱梁接 合部の降伏破壊により梁の曲げ耐力が十分に発揮されな い場合がある 1)。これを防ぐために柱梁曲げ耐力比を大き くすると、柱の配筋が過密になって施工が困難になる。 そこで,熱処理により部分的に高強度化した鉄筋(以下, 部分高強度化鉄筋)を柱主筋に用いることで、柱の主筋 量を増やさずに柱梁接合部の損傷を低減できる。さらに, 主筋を部分的に高強度化することで普通強度用の継手を 使用できるので、コスト削減にも寄与することができる。 一方で、柱の曲げ終局耐力を増大するだけでは、柱梁接 合部の降伏破壊の抑制には不十分である。そこで部分高 強度化鉄筋を梁主筋に用いることでヒンジ位置を梁端部 から高強度部分と普通強度部分の境界位置(以下,強度 境界位置)へ移動させて(ヒンジリロケーション), 柱梁 接合部を弾性に保持すれば、損傷を低減できる。昨年度 の実験結果では、梁主筋は強度境界位置で降伏し、柱梁 曲げ強度比が 1.5~1.7 程度あったにもかかわらず最終的な 破壊状況としては,接合部破壊型となった2)。

本研究では、昨年度の実験結果より、梁主筋降伏後の 接合部の損傷を防ぎ、ヒンジリロケーションさせること を目的とし、当工法の実建物への適用性を検討する。昨 年度の試験体 MA-1, MB-1 を基準試験体として, 柱梁曲 げ強度比や強度境界位置および柱の軸力変動の影響を実 験変数とし,構造特性を検討した。また,昨年度同様に プレキャスト工法に対する構造特性の検討も行った。

公 一 动脉冲的 20													
	試験体	MA-1(基準試験体)	MA-5	MA-6	MA-7	MA-8	MB-1(基準試験体)	MB-4	MB-5	MB-6	MB-7	MB-8	
		十字形					ト形						
武駛14形衣		一体打ち プレキ				プレキャスト		一体	一体打ち プレキャスト 一体			一体打ち	
コンク	リート圧縮強度(N/mmi)	37.8	36.8	37.5	38.0	39.5	37.8	31.3	32.5	32.5	34.7	35.2	
梁	スパン (mm)	3200					1600						
	幅(mm) ×せい(mm)	250×400					250 × 400						
	主筋(普通強度,高強度)	4-D16 (SD34	45,SD700U)	5-D16 (SD345,700U)	4-D16 (SD345,SD700U)		4-D16(SD345,SD700U)		D16(SD345,SD700	4-D16(SD345,SD700U)		U)	
	引張主筋比(%)	0.79 0.99 0.79				.79	0	0.9 1.13 0.9					
	補強筋	2-D6 @50 (SD295A)							2-D6@50	(SD295A)			
	高強度化範囲(mm)	400 200			400		400 200		400				
	スパン (mm)	2830					2830						
	幅(mm) ×せい(mm)	350×350					350 × 350						
	6-D19	10-D19	6-D19	8-D19	10-D19	4-D16	6-D19	4-D16	6-D16	6-0	019		
柱	主肋(盲週独皮,高独皮)	(SD345,SD700U)	(SD345,SD700U)	(SD345,SD700U)	(SD345,SD700U)	(SD345,SD700U)	(SD345,SD700U)	(SD345,SD700U)	(SD345,SD700U)	(SD345,SD700U)	(SD345,	SD700U)	
	主筋比(%)	1.4	2.3	1.4	1.9	2.3	0.65	1.4	0.65	1.4	1.	87	
	補強筋	D6 @50 (SD295A)					D6@50(SD295A)						
	高強度化範囲(mm)	350					350						
接合部	補強筋比(%)		0.35					0.35					
	軸力(kN)	469	451	459	465	484	232	197	205	203	217	0~650	
軸力比		0.1					0.05	0.05	0.05	0.05	0.05	0~0.15	
柱梁曲げ強度比		1.59	2.64	1.82	1.89	2.68	1.75~1.51	3.19~2.94	1.59~1.33	1.64~1.37	3.24~2.99	4.12~2.69	
せん断余裕度(平均値)		1.43	1.38	1.34	1.41	1.45	2.16	1.85	1.82	1.9	1.99	2.01	
せん	ん断余裕度(下限値)	1.17	1.12	1.09	1.15	1.18	1.63	1.4	1.38	1.44	1.51	1.52	
	強度低下率	1.34	1.87	1.42	1.49	1.89	1.12~1.07	1.42~1.37	1.10~1.03	1.10~1.04	1.44~1.39	1.63~1.33	
予相破壊モード			確度 道思 位置 での 梁曲 げ 破壊					盗座信 らの この					

主 1 試験体課金

Seismic Performance Evaluation of Reinforced Concrete Beam-Column Subassemblage with Partially High-Strengthened Reinforcing Bar (Part4: Outline of Tests) *1, MURAKAMI Ken *2 ISHIKAWA Takuma
*3 YAMAYA Yusuke *4 KISHIDA Shinji
*5 KITAYAMA Kazuhiro *6 MURATA Yoshiyuki

2. 実験概要

2.1 試験体概要

図1に試験体概要を,表1に試験体諸元,表2,表3お よび表4に鋼材、コンクリートおよびグラウトの材料特性 を示す。試験体は縮尺1/2スケールの平面十字形4体(MA シリーズ) とト形 5 体 (MB シリーズ) とし、 梁断面を 250mm×400mm, 柱断面を350mm×350mm, 柱芯から梁 端部支持点までを 1600mm, 梁芯から上柱及び下柱支持 点までを各々1415mm とした。十字形に関しては、試験 体 MA-5 が昨年度の基準試験体より柱主筋量を増やし、柱 梁曲げ強度比を 2.5 以上に大きくした。試験体 MA-6 は梁 主筋の強度境界位置を柱面から梁せい(D)に対し、0.5D の 200mm とし, 強度境界位置が柱梁接合部に与える影響 を確認することを目的とした。試験体 MA-7 が昨年度の基 準試験体の柱に中段筋を加え, 柱梁接合部の変形に与え る影響を確認することを目的とした。試験体 MA-8 は、試 験体 MA-5 をプレキャスト工法に置き換え,下柱と柱梁接 合部が一体となった部材を用いた工法による試験体で, 上柱の柱脚部の柱主筋および片側の梁主筋の両方に継手 を有する。これらの継手は柱・梁主筋の高強度部を相互 に接合し、通常は継手を設置しない部材端部に継手を設

けたことが特徴である。ト形に関しては,試験体 MB-4, 試験体 MB-8 が配筋は同一で試験体 MA-5 と同様に昨年度 の基準試験体より柱主筋量を増やし,柱梁曲げ強度比を

表2 鋼材の材料特性

坐弦	降伏応力度	降伏ひずみ	引張強度	弾性限界ひずみ	
亚大用力	$\sigma y(N/mm2)$	εу(μ)	(N/mm2)	ε(μ)	
D6(SD295)※	438.1	4418	519.3	2418	
D16(SD345)	409.2	2319	573.0	-	
D16(SD700)※	869.7	6691	929.5	4691	
D19(SD345) ※	572.4	4111	561.6	2111	
D19(SD700) ※	1242.5	6606	920.1	4606	
※0.2%オフセット	ト 耐力				

表 3 コンクリートの材料特性

試験体	割裂強度	圧縮強度	最大荷重時	割線剛性		
	(N/mm²)	(N/mm²)	ひずみ(μ)	$(\times 10^4 N/mm^2)$		
MA-5	3.3	36.8	2037	2.89		
MA-6	3.2	37.5	2111	2.74		
MA-7	3.1	38.0	1998	3.11		
MA-8	2.8	39.5	2260	2.82		
MB-4	3.0	31.3	2123	2.65		
MB-5	3.2	32.5	2138	2.51		
MB-6	2.9	32.5	2043	2.57		
MB-7	3.1	34.7	2246	2.68		
MB-8	2.8	35.2	2208	2.71		

*1 芝浦工業大学 理工学研究科建設工学専攻 修士課程

*3 三井住友建設株式会社

*4 芝浦工業大学建築学部建築学科 教授 博士(工学)

*5 首都大学東京大学院 都市環境学研究科建築学域 教授 工博

*6 高周波熱錬株式会社 博士(工学)

2.5 以上とした。試験体 MB-5 は,試験体 MA-6 と同様に 強度境界位置を柱面から 0.5D の 200mm とした。試験体 MB-6 は,試験体 MA-7 と同様に柱に中段筋を加えた。試 験体 MB-7 は試験体 MA-8 と同様にプレキャスト工法を使 用し,試験体 MB-4 を置き換えた。試験体 MA-8 と試験体 MB-7 以外の試験体は一体打ちである。ト形試験体の梁主 筋は,二つのナットで固定した鋼製円板を用いて柱梁接 合部内に定着した(図 1(c))。全ての試験体の柱・梁主筋 には部分高強度化鉄筋を用い,柱主筋は梁面の上下から 各々350mm を高強度化部分とし,梁主筋は MA-6 と MB-5 以外の試験体は,柱面から 400mm を高強度化部分とした。 2.2 加力方法

加力装置を図2に示す。梁端部はローラー支持,下柱は ピン支持とし,上柱の支持点にある鉛直,東西の各方向 のジャッキにより載荷をした。加力は,MAシリーズおよ びMB-8以外のMBシリーズは一定軸力(十字形:軸力比 0.1,ト形:0.05)を,ト形のMB-8では変動軸力をそれぞ れ層間変位制御で繰り返し水平力を載荷した。MB-8では, 水平力に比例して昨年度と同様に軸力を変動させた。

3. まとめ

本報(その4)では、部分的に高強度化した鉄筋を用 いた鉄筋コンクリート柱梁部分架構の耐震性能評価に関 する構造実験の概要を報告した。謝辞はその6に示す。 参考文献

1) 日本建築学会:鉄筋コンクリート構造保有水平耐力計算規 準(案)・同解説, 2016

2) 岸田慎司ほか:部分的に高強度化した鉄筋を柱および梁主 筋に用いた鉄筋コンクリート柱梁部分架構の耐震性能評価 (その 1-3),日本建築学会大会(東北)学術講演梗概集, pp.639-644, 2018

3) 岸田慎司ほか:部分的に高強度化した鉄筋を柱および梁主 筋に用いた RC 造十字形柱梁接合部の実験,コンクリート工学 年次論文集, pp.277-282, Vol.37-2, 2015

- *1 Graduate Student, Shibaura Institute of Technology
- *2 Graduate Student, Tokyo Metropolitan Univ.
- *3 Sumitomo Mitsui Construction, Co.,Ltd
- *4 Professor, Shibaura Institute of Technology, Dr.Eng.
- *5 Professor, Tokyo Metropolitan Univ., Dr.Eng.
- *6 NETUREN Company Limited, Dr Eng anization 1

^{*2} 首都大学東京大学院 都市環境科学研究科建築学域 修士課程