〇北山 和宏1*

村上 研 2*

岸田 慎司 3*

小田 稔 5*

義行 4*

村田

部分的に高強度化した鉄筋を用いた鉄筋コンクリート柱梁部分架構の耐震性能評価

(その1 実験概要)

鉄筋コンクリート	柱梁接合部	部分高強度化鉄筋
ヒンジリロケーション	柱梁曲げ耐力比	接合部降伏破壊

1. はじめに

鉄筋コンクリート (RC) 骨組において, 柱と梁の曲げ 終局耐力の比(柱梁曲げ耐力比)が1に近い場合, 柱梁接 合部の降伏破壊により梁の曲げ耐力が十分に発揮されな い場合がある¹⁾。これを防ぐために柱梁曲げ耐力比を大き くすると, 柱の配筋が過密になって施工が困難になる。 そこで, 熱処理により部分的に高強度化した鉄筋(以下, 部分高強度化鉄筋)を柱主筋に用いることで, 柱の主筋量 を増やさずに柱梁接合部の損傷を低減できる。さらに, 主筋を部分的に高強度化することで普通強度用の継手を 使用できるので, コスト削減に寄与する。

一方で、柱の曲げ終局耐力の増大だけでは柱梁接合部 の降伏破壊の抑制には不十分である。そこで部分高強度 化鉄筋を梁主筋に用いることで、降伏ヒンジ位置を梁端 部から高強度部分と普通強度部分の境界位置(以下,強 度境界位置)へ移動させて(ヒンジリロケーション),柱 梁接合部を弾性に保持すれば、その損傷を低減できる。 既往の研究³⁾では部分高強度化鉄筋を用いて RC 柱梁部分 架構のヒンジリロケーションを再現させた結果、柱梁接 合部の損傷を低減できた。しかし、部分高強度化鉄筋を 用いた本工法の実建物への適用性は検証されていない。 実用化に向けて柱梁部材のプレキャスト化も必要となる。

そこで本研究では部分高強度化鉄筋を柱・梁主筋に用い,梁のヒンジリロケーションを意図した RC 部分架構に関して,第一に本工法の実物件への適用を見据えて,ス

試験体名		MB-1	MB-2	MB-3		
試験体形状		ト形				
		一体	一体打ち			
	幅×せい(mm)		250×400			
主筋(普通強度,高強度) 補強筋		4-D16(SD34	4-D16(SD345, SD700U%1), pt=0.90%			
		2	-D6@50(SD295A	4)		
	高強度化範囲(mm)※2		400			
柱 幅×せい(mm) 主筋(普通強度,高強度) 補強筋			350 × 350			
		4-D16(SD345, SD700U%1)), pg=0.65%				
		2-D6@50(SD295A				
	高強度化範囲(mm)※2	350				
接合部補強筋比(%)		0.35(梁主筋間 6 組)		1)		
柱梁曲げ強度比		1.46	2.32	1.46		
(上段:最大,下段:最小)		1.24	0.71	1.24		
接合部せん断余裕度		1.71				
軸力比		0.05	0~0.15	0.05		
入力軸力(kN)		232	0~689	233		

表1 ト形試験体諸元

Seismic Performance Evaluation of Reinforced Concrete Beam-Column Subassemblage with Partially High-Strengthened Reinforcing Bar (Part1: Outline of Tests)

軸力
主筋∽ 4-D16 水平力
C
$\begin{array}{c} \pm 500 \\ 6 - D19 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
(i)梁断面 (MA-1,2,3,4) (i)梁断面 (MA-2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
グラウト目地 3gg境界位置 グラウト目地 スリーブ艇手
<u>グラウト</u> スリーブ総手 強度境界位置
(g)試験体 MA-3, MB-3(ト形) (h)試験体 MA-4

正会員

同

同

同

同

図1 試験体概要(単位 mm)

表 2 十字形試験体諸元

試験体名		MA-1	MA	-2	MA-3	MA-4	
試験体形状		十字形					
		一体打ち			プレキャスト		
	幅×せい(mm)			250>	< 400		
汊	主筋(普通強度,高強度)	4-D16(S	SD345,	SD70	DOU※1),	pt=0.90%	
梁 補強筋			2-D	6@50	(SD295A)		
	高強度化範囲(mm)※2	nm)※2			400		
	幅×せい(mm)	350×350					
ل اً:	主筋(普通強度,高強度)	6-D19(SD345, SD700U%1), pg=1.40%					
11	補強筋	2-D6@		6@50	@50(SD295A)		
	高強度化範囲(mm)※2	350					
ł	妾合部補強筋比(%)	0.35(梁主筋間6組)					
	柱梁曲げ強度比 1.59 1.3		1.2	7	1.52	1.53	
接合部せん断余裕度 1.22		1.2	0	1.15	1.15		
軸力比		0.1					
入力軸力(kN)		469	454		422	429	
※1 国土交通大臣の認定済み				スラブ(MA-2のみ)			
			厚さ(mm) 70		70		
>	※2 フェイス位置か	らの距離		幅(mm)		1530	
				7	ラブ筋	D6(SD295)	

*1 KITAYAMA Kazuhiro, *2 MURAKAMI Ken,
*3 KISHIDA Shinji, *4 MURATA Yoshiyuki
*5 ODA Minoru

ラブおよび柱の軸力変動の影響に着目し,部分架構の構 造特性を検証した。第二に,プレキャスト工法への展開 を目指して,二種類の工法に対する構造特性を検証した。

2. 実験概要

2.1 試験体概要

図1に試験体概要を,表1,表2に試験体諸元,表3, 表4および表5に鋼材、コンクリートおよびグラウトの材 料特性を示す。試験体は縮尺 1/2 スケールの平面十字形 4 体(MA シリーズ)とト形3体(MB シリーズ)とし、梁断面を 250mm×400mm, 柱断面を350mm×350mm, 柱芯から梁 端部支持点までを 1600mm, 梁芯から上柱及び下柱支持 点までを各々1415mm とした。十字形は, MA-1 が一体 打ちで本工法の基準試験体、MA-2 が一体打ちでスラブの みを付けた試験体である。MA-3 は梁と柱梁接合部が一体 となった部材を用いたプレキャスト工法による試験体で, 下柱の柱頭部に柱主筋の継手がある。MA-4 は下柱と柱梁 接合部が一体となった部材を用いたプレキャスト工法に よる試験体で, 上柱の柱脚部の柱主筋および片側の梁主 筋の両方に継手を有する。これらの継手は柱・梁主筋の 高強度部を相互に接合し,通常は継手を設置しない部材 端部に継手を設けたことが特徴である(図1(g),(h))。ト形 のMB-1, MB-2は同一で、一体打ちの試験体である。MB-3は MA-3 と同じプレキャスト工法を使用した。ト形試験 体の梁主筋は、二つのナットで固定した鋼製円板を用い て柱梁接合部内に定着した(図 1(c))。全ての試験体の 柱・梁主筋には部分高強度化鉄筋を用い、柱主筋は梁面 の上下から各々350mm を高強度化部分とし、梁主筋は柱 面から 400mm を高強度化部分とした。柱梁曲げ耐力比は 1.2 から 1.6 (変動軸力の試験体を除く) に設定した。

2-2 加力方法

加力装置を図2に示す。梁端部はローラー支持,下柱は

表 3	鋼材の	材料特性
-----	-----	------

and the	降伏点	降伏ひずみ	引張強さ	弾性限界時ひずみ
鉃 筋	$\sigma y (N/mm^2)$	εу(μ)	(N/mm ²)	ε(μ)
D6(スラブ筋:SD295A)①	384.7※	3868	521.6	1868
D6(補強筋:SD295A)②	419.5※	4140	548.5	2140
D16(SD345)	401.8	2063	571.5	-
D16(SD700U)	822.7※	6237	892.2	4237
D19(SD345)	411.3	2586	576.6	-
D19(SD700U)	892.9※	6560	964.4	4560

※0.2%オフセット耐力

表 4 コンクリートの材料特性					
	割裂強度	圧縮強度	圧縮強度時ひずみ	割線剛性	
	(N/mm ²)	(N/mm ²)	(µ)	$(\times 10^4 N/mm^2)$	
MA-1	2.5	37.8	1899	2.93	
MA-2	2.8	37.1	1982	2.94	
MA-3	2.9	35.0	1849	2.87	
MA-4	2.4	35.0	1686	2.91	

1954

- *2 芝浦工業大学 理工学研究科建設工学専攻 修士課程
- *3 芝浦工業大学建築学部建築学科 教授 博士 (工学)

37.8

*4 高周波熱錬株式会社 博士(工学)

*5 三井住友建設株式会社

26

MB-1.2.3

ピン支持とし、上柱の支持点にある鉛直、東西の各方向 のジャッキにより載荷をした。加力は、MA シリーズおよ び MB-1 と MB-3 では一定軸力(十字形:軸力比 0.1, ト 形:0.05)を、ト形の MB-2 では変動軸力をそれぞれ載荷 し、層間変位制御で繰り返し水平力を載荷した。層間変 形角0.125%の加力を1回,層間変形角0.25%,0.5%,1%, 1.5%,2%,3%,4%を各3回,その後,引き切りを5% まで行った。MB-2 では、水平力に比例して軸力を変動さ せた(図3)。変位0時の軸力比を0.05とし、正載荷では、 強度境界位置で梁主筋が降伏するときの梁せん断力 80kN 時に軸力比が圧縮 0.15 となるまで増加,負載荷では正載 荷と同じ傾きで、梁せん断力が40kN時に軸力が0となる まで減少させ、それ以降はそれぞれ一定軸力とした。

3. まとめ

本報(その1)では、部分的に高強度化した鉄筋を用 いた鉄筋コンクリート柱梁部分架構の耐震性能評価に関 する構造実験の概要を報告した。謝辞はその3に示す。

参考文献

1) 日本建築学会:鉄筋コンクリート構造保有水平耐力計算規 準(案)・同解説,2016

2) 岸田慎司ほか:部分的に高強度化した鉄筋を柱および梁主 筋に用いた RC 造十字形柱梁接合部の実験, コンクリート工学 年次論文集, pp.277-282, Vol.37-2, 2015

*1 Professor, Tokyo Metropolitan Univ., Dr.Eng.

- *2 Graduate Student, Shibaura Institute of Technology
- *3 Professor, Shibaura Institute of Technology, Dr.Eng.
- *4 NETUREN Company Limited Dr.Eng.
- *5 Sumitomo Mitsui Construction, Co.,Ltd.

3 00