RC 十字形柱梁接合部パネルの破壊機構に関する実験的研究

正会員	○石木 健士朗*1	正会員	平林 幸泰*1
同	北山 和宏 ^{*2}	同	近藤 慶一*3
同	福山 洋*4	同	壁谷澤 寿一*4

鉄筋コンクリート	十字形柱梁接合部	柱梁曲げ強度比
アスペクト比	接合部破壊	

1. はじめに

RC 柱梁接合部の破壊機構については様々な提案がある が、設計因子の種類および組み合わせが多いため精度良 いモデルは得られていない。本研究では従来の方法に代 わる塩原の力学モデル¹⁾の妥当性を検証するため、柱梁接 合部の剛性・強度・損傷集中に対する主要な影響因子で ある 1)柱梁曲げ強度比(柱曲げ終局強度の梁曲げ終局強度 に対する比)、2)柱軸力、および 3)接合部アスペクト比(梁 せいの柱せいに対する比)を実験変数とした RC 十字形柱 梁部分架構の静的繰り返し水平加力実験を行った。

2. 実験計画

2.1 試験体概要

表1に試験体諸元および諸計算結果、表2に材料特性、 図1に試験体形状および柱・梁断面図を示す。試験体は 平面十字形部分架構4体であり、水平力を受ける平面架 構の柱・梁反曲点位置で切り出したものである。

柱断面は 350mm×350mm、梁幅を 250mm とし、全試験 体共通とした。梁せいは 400mm あるいは 600mm である。 コンクリート割裂引張強度は 2.7~2.8MPa であった。梁は 同配筋とし、柱主筋量を変化させて各試験体の柱梁曲げ 強度比を調整した。試験体 J1 の柱梁曲げ強度比は 1.76 と かなり大きく、その他の試験体の柱梁曲げ強度比は 1.4 ~1.5 程度で一定とした。試験体 J1,J2,J4 には軸力比 0.09 の柱圧縮軸力、試験体 J3 には 412.8kN の柱引張軸力を加 えた。試験体 J4 のみ梁せいが 600mm で異なり、接合部ア スペクト比が 1.71 と大きい。全試験体とも接合部せん断 余裕度(接合部せん断強度²⁾の梁曲げ終局時接合部入力せ ん断力に対する比)は 1.6~1.9 程度と大きく、従来の設計法 では接合部破壊しないと考えられる。

試験体名	J1	J2	J3	J4	
梁主筋(SD345)	上端・下端ともに5+2-D13				
柱主筋(SD345)	12-D16	12-D13	14-D19	16-D16	
軸力(kN)	圧縮412.8		引張 412.8	圧縮412.8	
柱梁曲げ強度比	1.76	1.35	1.41	1.55	
接合部アスペクト比	1.14			1.71	
接合部せん断余裕度 ^{*1}	1.66	1.64	1.66	1.86	
梁曲げ終局時層せん断力略算値 ^{*2} (kN)	97.2			152.6	
楠原らの接合部曲げ終局時計算値 ^{*3} (kN)	128.1	115.7	122.8	197.1	

	表1	試験体諸元および諸計算結果
--	----	---------------

*1 文献 2)式 V_{ju} = κφF_jb_jD_jを用いて算出(記号は原典参照)

*2 文献 3)式 梁 $M_u = 0.9a_t\sigma_y d$ を用いて算出(記号は原典参照)

*3 文献 4)の楠原・塩原らによる提案式を用いて算出

Test for Failure Mechanism of R/C Interior Beam-Column Joint

2.2 実験方法

図2に加力装置を示す。梁端はローラー支持、下柱は ピン支持とし、上柱加力点には3軸1点クレビスを介し て、水平二方向および鉛直方向の計3基のジャッキを取 り付けた。面外ジャッキは面外転倒防止用である。

鉛直ジャッキで柱に 一定軸力を導入後、水 平ジャッキで正負交番 繰り返し載荷した。加 力履歴としては、はじ めに初期剛性を確認す るための小振幅の載荷 を行い、層間変形角 0.25%を1サイクル、 層間変形角0.5%、1.0%、 1.5%、2.0%、3.0%、 4.0%を2サイクルずつ 加力した後、正方向に 5%まで加力した。

表 2 材料特性

コンクリート	圧縮強度(MPa)	鋼材	降伏応力度(MPa)	引張強度(MPa)
J1	38.6	D10(SD345)	367	574
J2	37.9	D13(SD345)	371	552
J3	38.7	D16(SD345)	379	582
J4	39.3	D19(SD345)	388	589

ISHIKI Kenshiro, HIRABAYASHI Yukihiro KITAYAMA Kazuhiro, KONDO Keiichi FUKUYAMA Hiroshi and KABEYASAWA Toshikazu

3. 破壊性状および復元力特性

図3に最終破壊状況および層せん断力-層間変形角関 係を示す。□は最大層せん断力、△は梁主筋1段目降伏、 ◇は柱主筋1段目降伏、○は接合部横補強筋降伏を各々 示す。全試験体とも層間変形角0.6~0.8%時に梁主筋の降 伏、層間変形角0.8~1.0%時に接合部横補強筋の降伏が発 生した。その後、柱梁曲げ強度比が1.4程度の試験体J2 ~J4では層間変形角1.0~1.5%で柱主筋が降伏した一方で、 柱梁曲げ強度比が大きい試験体J1は層間変形角3.0%で最 大耐力に達するとほぼ同時に柱主筋が降伏した。試験体 J1~J3 は層間変形角3.0%で最大耐力に達したが、接合部ア スペクト比の大きい試験体J4 は層間変形角1.5%時の早期 に最大耐力に達した。最終的に耐力は試験体J1~J4 でそれ ぞれ15%、15%、8%、31%低下し、接合部アスペクト比 の大きい試験体J4 の耐力低下が最も著しかった。

全試験体で接合部の対角線ひび割れは顕著に発生した が、入隅部ひび割れは明瞭には観察できなかった。これ は柱幅が梁幅よりも大きい影響と考えられる。全試験体 とも梁・柱主筋の降伏後に接合部パネルが破壊し、履歴 形状はエネルギー吸収能に乏しいスリップ形であった。 主筋の降伏後は同一振幅での2サイクル目でより顕著な スリップ性状を示した。層間変形角3.0%の2サイクル目 における等価粘性減衰定数h_{eq}は柱圧縮軸力を加えた試験 体J2で11.0%だったが、柱引張軸力を加えた試験体J3で は10.3%と若干小さかった。図4に実験値と計算値の比較 を示す。柱梁曲げ強度比および柱軸力が異なる試験体 J1~J3では最大耐力はほぼ同等であった。全試験体におい て、最大耐力実験値は梁曲げ終局時略算値³⁾よりも10%程 度大きく、楠原・塩原らの接合部曲げ終局時計算値⁴⁾より も10%程度小さかった。

4. まとめ

柱幅が梁幅よりも大きく、柱軸力が作用し、柱梁曲げ 強度比が 1.4~1.8 の十字形部分架構において、接合部せん 断余裕度が 1.7 程度と大きいにもかかわらず、梁・柱主筋 の降伏後に接合部パネルが破壊した。これは塩原による 破壊機構¹⁾と概ね合致したが、実験での最大耐力は理論的 に求めた接合部曲げ終局強度⁴⁾よりも 10%小さく、設計で の利用にあたってはさらに検討を要する。

*1 首都大学東京大学院	博士前期課程
*2 首都大学東京大学院	教授 工博
*3 東京工業大学大学院	修士課程
*4 独立行政法人建築研究	铲所 工博

図3 最終破壊状況および層せん断力 - 層間変形角関係

謝辞:本研究は平成 22 年度の国土交通省建築基準整備促進補助金事業「鉄筋コンクリート造の壁はり接合部の耐力評価に関する実験」 (研究代表者:塩原等東京大学准教授)により行われた。研究実施 に際してご助言・ご援助いただいた塩原等先生および楠原文雄先生 (東京大学)にあつく御礼申し上げる。

参考文献

1) 塩原 等:鉄筋コンクリート柱梁接合部:見逃された破壊機構,日本建築学会構造系論文集.Vol. 73, No. 631, pp. 1641-1648, 2008.9

2) 日本建築学会:鉄筋コンクリート造建物の靭性保証型耐震設計指 針・同解説, 1999

3) 日本建築防災協会:2001 年改訂版既存鉄筋コンクリート造建築物 の耐震診断基準・同解説,2001

4) 楠原文雄,塩原等,他:鉄筋コンクリート造柱梁接合部の終局強度 に及ぼす梁および柱主筋量の影響(その4),日本地震工学会大会-2009 梗概集,東京,pp.28-35,2009.11.

*1 Graduate School of Engineering, Tokyo Metropolitan University

- *2 Professor, Tokyo Metropolitan University, Dr.Eng.
- *3 Graduate School of Engineering, Tokyo Institute of Technology
- *4 Building Research Institute, Dr.Eng.