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SEISMIC PERFORMANCE AND ULTIMATE FLEXURAL CAPACITY EVALUATION BASED ON 3D JOINT-HINGING 

FAILURE MODEL FOR R/C CORNER COLUMN-BEAM JOINT UNDER BI-LATERAL LOADING 
 

 *  ** 
Hiroaki ISHIZUKA and Kazuhiro KITAYAMA 

 

Joint-hinging performance of R/C corner column-beam subassemblages was studied by testing three-dimensional column-beam subassemblage specimens without/with 

slabs under bi-lateral loading. When a column-to-beam capacity ratio was changed from 1.5 to 2.6 by the increase in the column compressive axial load in past tests or 

the amount of column longitudinal reinforcement in this tests, the column compressive axial load had a greater influence on enhancement of the ultimate joint-hinging 

capacity than the amount of column longitudinal reinforcement. A method based on three-dimensional joint-hinging failure model constructed herein can adequately 

evaluate the ultimate joint-hinging capacity of a corner joint under bi-lateral loading. 

 

Keywords : Reinforced concrete, Corner column-beam joint, Bi-lateral loading, Seismic performance, 3D failure model, Joint-hinging failure 
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SEISMIC PERFORMANCE AND ULTIMATE FLEXURAL CAPACITY EVALUATION BASED ON 3D JOINT-HINGING 
FAILURE MODEL FOR R/C CORNER COLUMN-BEAM JOINT UNDER BI-LATERAL LOADING

 
Hiroaki ISHIZUKA * and Kazuhiro KITAYAMA **  

 
* Graduate Student, Dept. of Architecture and Building Engineering, Tokyo Metropolitan University 
** Prof., Dept. of Architecture and Building Engineering, Tokyo Metropolitan University, Dr. Eng. 

 

Static loading tests to reinforced concrete (R/C) three-dimensional (3D) corner column-beam subassemblage specimens were carried 

out by Katae and Kitayama (2014) to investigate the effect of column compressive axial load on failure mechanics of joint-hinging 

proposed by Shiohara. The Shiohara’s proposal pointed out that failure mode of a R/C beam-column-joint frame depends greatly on a 

column-to-beam capacity ratio and joint-hinging failure tends to develop when a column-to-beam capacity ratio is close to unity. Note 

that a column-to-beam capacity ratio can be varied by changing not only the magnitude of column axial load but also the amount of 

column longitudinal reinforcement. 

Therefore three 3D corner column-beam subassemblage specimens (two without slabs and one with a slab having a thickness of 70 

mm) were tested under bi-lateral loading and constant column axial load where a column-to-beam capacity ratio of 1.5 and 2.6 was set 

by placing column longitudinal reinforcement of 8-D16 and 8-D19 respectively. All 3D subassemblage specimens failed in joint-hinging 

with an increase in story drift. 

It is revealed by Katae and Kitayama (2014) that the ultimate flexural capacity of corner column-beam joints under bi-lateral loading 

can be estimated based on the new mechanism of joint-hinging by assuming that the orbit on the rectangular coordinates plane defined 

by joint-hinging capacities in both directions orthogonal to each other traces an ellipse curve under bi-lateral loading. Three-dimensional 

(3D) failure surfaces and stress flow conditions in a corner column-beam joint under bi-lateral loading, however, are not clarified yet. 

Then a 3D joint-hinging failure model was constructed for a corner joint based on test results referring to a plane joint-hinging failure 

model proposed by Kusuhara and Shiohara. A quick evaluation method for the ultimate joint-hinging capacity was proposed based on the 

3D failure model in a corner column-beam joint under bi-lateral loading. 

 

General conclusions are drawn from the study as follows. 

 

(1) When a column-to-beam capacity ratio increased from 1.5 to 2.6, the ultimate joint-hinging capacity computed as a resultant force of 

two orthogonal story shear forces under bi-lateral loading increased to 1.19 times by large amount of column longitudinal reinforcement. 

This indicates that the ultimate joint-hinging capacity was enhanced by the increase in a column-to-beam capacity ratio due to increasing 

the amount of column longitudinal reinforcement. 

 

(2) When a column-to-beam capacity ratio was changed from 1.5 to 2.6 by the increase in the column compressive axial load in past tests 

or the amount of column longitudinal reinforcement in this tests, the column compressive axial load had a greater influence on 

enhancement of the ultimate joint-hinging capacity under bi-lateral loading than the amount of column longitudinal reinforcement. 

 

(3) A slab contributed to enhancing the ultimate joint-hinging capacity by 1.07 times that without a slab for 3D corner column-beam 

subassemblages with a column-to-beam capacity ratio of 1.5, failing in joint-hinging. Torsional moment at the end of a transverse beam 

caused by tensile force of slab reinforcing bars in the longitudinal direction, whose rotating direction is counter to that of upper and 

lower columns, is carried to a beam-column joint and restrains rotation of the upper and lower columns. This is the reason for 

enhancement of the ultimate joint-hinging capacity due to a slab. 

 

(4) Proposed method based on 3D failure model herein can adequately evaluate the ultimate joint-hinging capacity of a corner 

column-beam joint under bi-lateral loading since there is a discrepancy within 10 % between predicted ultimate capacity and test result. 
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Static loading tests to reinforced concrete (R/C) three-dimensional (3D) corner column-beam subassemblage specimens were carried 

out by Katae and Kitayama (2014) to investigate the effect of column compressive axial load on failure mechanics of joint-hinging 

proposed by Shiohara. The Shiohara’s proposal pointed out that failure mode of a R/C beam-column-joint frame depends greatly on a 

column-to-beam capacity ratio and joint-hinging failure tends to develop when a column-to-beam capacity ratio is close to unity. Note 

that a column-to-beam capacity ratio can be varied by changing not only the magnitude of column axial load but also the amount of 

column longitudinal reinforcement. 

Therefore three 3D corner column-beam subassemblage specimens (two without slabs and one with a slab having a thickness of 70 

mm) were tested under bi-lateral loading and constant column axial load where a column-to-beam capacity ratio of 1.5 and 2.6 was set 

by placing column longitudinal reinforcement of 8-D16 and 8-D19 respectively. All 3D subassemblage specimens failed in joint-hinging 

with an increase in story drift. 

It is revealed by Katae and Kitayama (2014) that the ultimate flexural capacity of corner column-beam joints under bi-lateral loading 

can be estimated based on the new mechanism of joint-hinging by assuming that the orbit on the rectangular coordinates plane defined 

by joint-hinging capacities in both directions orthogonal to each other traces an ellipse curve under bi-lateral loading. Three-dimensional 

(3D) failure surfaces and stress flow conditions in a corner column-beam joint under bi-lateral loading, however, are not clarified yet. 

Then a 3D joint-hinging failure model was constructed for a corner joint based on test results referring to a plane joint-hinging failure 

model proposed by Kusuhara and Shiohara. A quick evaluation method for the ultimate joint-hinging capacity was proposed based on the 

3D failure model in a corner column-beam joint under bi-lateral loading. 

 

General conclusions are drawn from the study as follows. 

 

(1) When a column-to-beam capacity ratio increased from 1.5 to 2.6, the ultimate joint-hinging capacity computed as a resultant force of 

two orthogonal story shear forces under bi-lateral loading increased to 1.19 times by large amount of column longitudinal reinforcement. 

This indicates that the ultimate joint-hinging capacity was enhanced by the increase in a column-to-beam capacity ratio due to increasing 

the amount of column longitudinal reinforcement. 

 

(2) When a column-to-beam capacity ratio was changed from 1.5 to 2.6 by the increase in the column compressive axial load in past tests 

or the amount of column longitudinal reinforcement in this tests, the column compressive axial load had a greater influence on 

enhancement of the ultimate joint-hinging capacity under bi-lateral loading than the amount of column longitudinal reinforcement. 

 

(3) A slab contributed to enhancing the ultimate joint-hinging capacity by 1.07 times that without a slab for 3D corner column-beam 

subassemblages with a column-to-beam capacity ratio of 1.5, failing in joint-hinging. Torsional moment at the end of a transverse beam 

caused by tensile force of slab reinforcing bars in the longitudinal direction, whose rotating direction is counter to that of upper and 

lower columns, is carried to a beam-column joint and restrains rotation of the upper and lower columns. This is the reason for 

enhancement of the ultimate joint-hinging capacity due to a slab. 

 

(4) Proposed method based on 3D failure model herein can adequately evaluate the ultimate joint-hinging capacity of a corner 

column-beam joint under bi-lateral loading since there is a discrepancy within 10 % between predicted ultimate capacity and test result. 
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