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SEISMIC PERFORMANCE OF REINFORCED CONCRETE CORNER BEAM-COLUMN JOINT UNDER 
TRI-DIRECTIONAL LOADING 

 
 

 *  ** 
Hiromu KATAE and Kazuhiro KITAYAMA  

 
Seismic performance of a corner beam-column joint in reinforced concrete frames was studied by testing two three-dimensional beam-column 

subassemblage specimens without slabs under tri-directional loading. A column-to-beam flexural strength ratio was varied from 1.4 to 2.3 by changing the 

magnitude of column axial load. Although sufficient redundancy to prevent shear failure was provided to a beam-column joint in the test, all joints failed in 

flexure after beam and column longitudinal bars yielded. The ultimate flexural capacity of a corner joint under tri-directional loading was enhanced by large 

column axial load, and can be estimated by the method proposed by Shiohara. 

 
Keywords : Reinforced concrete, Corner beam-column joint, Tri-directional loading, Joint failure, Axial force, Column-to-beam strength ratio 
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A new failure mechanism was proposed by Shiohara that a reinforced concrete (R/C) beam-column joint tends to fail 
in flexure when an ultimate flexural capacity of a column section is close to that of a beam section at the center of a joint 
in a R/C frame. Recent experimental studies to verify such a failure mechanism have been conducted using plane 
interior and exterior beam-column subassemblage specimens. There are few tests, however, to use three-dimensional 
beam-column subassemblages with orthogonal beams to each other which frame into a column such as a corner 
beam-column joint. For corner columns in actual R/C buildings, a loss of capacity to sustain column axial load resulting 
from severe damage to a corner joint leaded to partial story collapse of the building by some earthquakes. 
 

Therefore seismic performance of a corner beam-column joint in R/C frames was studied by testing two 
three-dimensional beam-column subassemblage specimens without slabs under both constant column axial load and 
bi-lateral load reversals. A column-to-beam flexural strength ratio was varied from 1.4 to 2.3 by changing the 
magnitude of column compressive axial load. A plane exterior beam-column subassemblage specimen was also tested for 
comparison. General findings taken from the study are summarized as follows. 
 
(1) Although a joint shear redundancy ratio of 1.6 to a joint shear strength estimated by AIJ provisions was provided to 
a corner beam-column joint in the test to prevent shear failure, all joints failed severely in flexure under tri-directional 
loading after beam and column longitudinal bars and joint hoops yielded. 
 
(2) Peak story shear force in the transverse direction under tri-directional loading was 0.74 times the ultimate beam 
flexural capacity computed by a section analysis for a corner beam–column subassemblage with a column axial stress 
ratio of 0.04 (a column-to-beam flexural strength ratio of 1.4). Beams did not develop fully their flexural performance 
due to joint flexural failure. In contrast, peak story shear force under tri-directional loading almost attained to the 
ultimate beam flexural capacity for a subassemblage with a column axial stress ratio of 0.12 (a column-to-beam flexural 
strength ratio of 2.3), whereas lateral-load carrying capacity descended severely after the peak capacity, attributed to 
severe damage in a joint region. 
 
(3) When column compressive axial load was increased from an axial stress ratio of 0.04 to 0.12, the ultimate flexural 
capacity for a corner joint computed as a resultant force of two orthogonal story shear forces under bi-lateral horizontal 
loading was enhanced to 1.2 to 1.4 times by large column axial load. A joint flexural capacity with an axial stress ratio of 
0.12, however, decreased heavily after the peak capacity, leading to axial collapse of the subassemblage. This should be 
noted for seismic design to R/C buildings when a little amount of column longitudinal bars and joint lateral hoops is 
provided by the lower bound required by law or seismic provisions. 
 
(4) The ultimate flexural capacity for a corner beam-column joint under tri-directional loading can be estimated based 
on the new failure mechanism proposed by Kusuhara and Shiohara if it is assumed that the orbit for two joint flexural 
capacities orthogonal to each other depicts an ellipse shape under bi-lateral horizontal loading. 
 
(5) Fatter hysteresis loops were observed under bi-lateral horizontal loading for a corner beam-column subassemblage 
specimen with a column compressive axial stress ratio of 0.12 than that of 0.04, showing a more amount of energy 
dissipation. This was caused by restraint of diagonal-crack opening in a joint due to large column axial load.
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