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Strength design criteria for steel members at elevated temperatures
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Abstract

Design equations for structural steel members at elevated (fire) temperatures are evaluated through comparisons with nonlinear finite element
simulations. The study includes comparative analyses of the American Institute of Steel Construction (AISC) and European Committee for
Standardization (CEN) design provisions for laterally unsupported I-shaped columns, beams, and beam–columns at temperatures between ambient
to 800 ◦C. The Eurocode 3 provisions are shown to predict the simulated finite element results within about 10%–20%. On the other hand, the
AISC specification predicts strengths that are up to twice as large (unconservative) as the simulated results. The discrepancies are largest for
members of intermediate slenderness and temperatures above 300 ◦C. Modifications to the AISC equations are proposed that provide improved
accuracy with calculated strengths typically within 20%–30% of the simulated results. Limitations of the member-based assessments and future
research and development needs for structural fire engineering are discussed.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

While the basic concepts for structural fire engineering are
well established, explicit assessment of structural response
to fires is uncommon in engineering practice. Instead,
building codes and design practice have traditionally relied on
prescriptive requirements to provide adequate structural fire-
resistance in building structures. In steel-framed structures,
this is typically accomplished through thermal insulation
requirements that are validated by fire endurance tests. Such
approaches may work well for routine design, however, the
lack of alternative methods to establish structural performance
by calculation impedes the design of structures where the
prescriptive methods fall short of providing effective solutions.
Recently, the situation is changing with the publication of
standards to calculate structural fire resistance in a manner
similar to how other strength limit states are evaluated. For
example, the Eurocode 3 (EC3) standard [1] includes detailed
provisions to establish fire loads and evaluate their effects
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on steel structures. The latest edition of the Specification for
Structural Steel Buildings in the American Institute of Steel
Construction (AISC) [2] includes a new appendix entitled,
Structural Design for Fire Conditions, which provides guidance
and criteria to evaluate the structural resistance of steel building
components at elevated temperatures.

The EC3 and AISC standards for steel structures both follow
an approach whereby the structural resistance to gravity and
other loads is calculated with the steel members at an assumed
elevated temperature. Each standard permits this evaluation
through either an “advanced” or “simple” method, where the
former requires rigorous structural and thermal simulations
and the latter method is accomplished through member-based
strength limit state checks. The member-based approaches are
similar to conventional checks made at ambient temperatures.
In the AISC specification, for example, the member design
strength equations are essentially the same as those for ambient
temperatures, except that the input yield strength and elastic
modulus of the steel are reduced based on the assumed elevated
temperature. While the AISC method is straightforward and
easy to implement, its accuracy has not been thoroughly
verified. On the other hand, the structural fire provisions of EC3
have been published in codified form since the early 1990’s and
have been reviewed and modified since their first publication.
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Symbols

A Cross-sectional area
Cw Warping constant
CX Exponent in equation for proposed critical

moment
E Modulus of elasticity
Fe Elastic buckling stress
FL Initial yield stress
Fp Stress at the proportional limit
Fr Residual stress
Fy Yield stress
G Shear modulus of elasticity
Ix , Iy Moment of inertia about strong and weak axis
J Torsional constant
K Effective buckling length factor
K p, K y, KE Reduction factors for the proportional

limit, yield stress, and modulus of elasticity
respectively

L Length
Mp Plastic moment
Mr Initial yield moment
Mcr,AISC, (Mcrx,AISC) Nominal moment (about strong

axis) in AISC
Mcr,EC3, (Mcrx,EC3) Nominal moment (about strong axis)

in EC3
Mcr,Prop, (Mcrx,Prop) Proposed nominal moment (about

strong axis)
Mcr,e Elastic critical moment
Mux Factored bending moment about strong axis
Mx,end Bending moment about strong axis at the ends
Pcr,AISC, (Pcry,AISC) Nominal axial strength of column

(for flexural buckling about weak axis) in AISC
Pcr,EC3, (Pcry,EC3) Nominal axial strength of columns

(for flexural buckling about weak axis) in EC3
Pcr,Prop, (Pcry,Prop) Proposed nominal axial strength of

column (for flexural buckling about weak axis)
Pu Factored axial load
Sx Elastic section modulus about strong axis
Zx Plastic section modulus about strong axis
T Temperature
b f Flange width of section
h Height of section
r Governing radius of gyration
rx , ry Radius of gyration about strong and weak axis
t f , tw Flange and web thickness of section. respectively
α Imperfection factor for flexural buckling in EC3
αLT Imperfection factor for lateral–torsional buckling

in EC3
αx , αy Imperfection factor for flexural buckling about

strong and weak axis in EC3
λ Slenderness ratio in AISC
λ Slenderness ratio for flexural buckling in EC3
λLT Slenderness ratio for lateral torsional buckling in

EC3
λp Slenderness ratio for transition between full
plastic bending and inelastic lateral–torsional
buckling in AISC

λr Slenderness ratio for transition between inelastic
and elastic lateral–torsional buckling in AISC

λr f , λrw Limiting width–thickness ratio for local buck-
ling of flange and web in AISC

χ Reduction factor for flexural buckling in EC3
χLT Reduction factor for lateral torsional buckling in

EC3

The objective of this study is to provide a critical
assessment of the AISC and EC3 member strength equations
through a comparison with results of detailed finite element
simulations at elevated temperatures. The assessment includes
laterally unsupported columns, beams, and beam–columns of
bi-symmetric I-shaped steel sections with idealized loading
and boundary conditions. The simulations employ three
dimensional shell finite element models that capture inelastic
yielding, overall and local buckling, and non-uniform torsion
effects. The column strengths are evaluated in terms of critical
axial loads applied to pin-ended columns with initial geometric
imperfections that represent fabrication tolerances. The beam
strengths are evaluated in terms of critical bending moments,
which are applied about the major-axis at the ends of a simply
supported beam that is laterally unsupported and susceptible
to lateral–torsional buckling. The results are then compared
for the combined effects of axial compression and bending
in beam–columns. The assessment covers a range of design
conditions by parametrically varying the elevated temperatures
and member lengths. Most of the analyses are for members of
Grade 50 steel (yield strength of Fy = 345 MPa) with selected
study of Grade 36 (Fy = 250 MPa) steel.

As will be demonstrated, the AISC strength equations
at elevated temperatures are unconservative, and alternative
strength equations are proposed. The proposed equations are
similar in format to the AISC provisions, thus maintaining
practicality for design. Beyond the immediate benefit of the
improved design equations, this research provides fundamental
information to improve the understanding of structural steel
members under fire conditions.

2. Basis of member strength evaluations

Assessment of structural safety to fire hazards can generally
be categorized into three stages. The first stage entails
characterization of fire initiation and development, which can
be done either through direct simulation or through parametric
time–temperature models of compartment gas temperatures.
The second stage involves heat transfer calculations to evaluate
temperatures in structural members, considering insulation
and other factors that affect heat transfer. The third stage
is to assess structural behavior under elevated temperatures,
including the effects of both thermal expansion and degradation
of material properties. The assessments made within each
of these three stages are generally treated as conditionally
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independent, where it is assumed that structural behavior does
not impact heat transfer or fire development and heat transfer
does not impact fire development. While there are situations
where the assumption of conditional independence does not
hold (e.g., where structural deformations may damage fire
compartments, which in turn affects fire development), in most
cases the conditional independence is a reasonable assumption.
This assumption greatly simplifies the assessment since the
analyses in each stage can be done separately and without
interaction. This line of reasoning is implicit in the structural
fire assessment presented herein (and in the AISC and EC3
design provisions), where the elevated steel temperatures are
treated as input to the structural assessment and calculated
independently.

In this study, it is assumed that the elevated temperature
of the steel members is known (or can be determined) and
used to evaluate the strength limit state of individual members
under the combined effects of elevated temperature and applied
loads. In concept, the strength limit state can then be evaluated
either by (1) calculating the critical temperature (intensity and
distribution) that the member can sustain under the given loads,
or (2) calculating the strength (load resistance) of a member
under a specified temperature. The former approach, referred
to herein as the “temperature approach”, is more representative
of the actual fire conditions, where the temperature increases
while the applied gravity loads are constant. The latter approach
(termed the “load approach”) is simpler to implement in
nonlinear analysis and fits more naturally in existing formats
for structural assessment, where member design equations or
simulation tools (e.g., nonlinear analysis) are used to assess
the critical loads based on the specified temperature-dependent
material properties. Although material nonlinear analyses are,
in concept, load path dependent, for monotonically increasing
gravity loads and temperatures of individual members, it is
reasonable to assume that the critical limit state calculated
following a “temperature approach” and “load approach”
should be similar. The authors have confirmed this assumption
by conducting finite element analyses of individual members
with fixed loads and variable temperature and vice versa.
Shown in Fig. 1 is an example of one such analysis, where
the critical combinations of temperature and strength for a
column are obtained by both approaches. This example is for
a W14 × 90 Grade 50 column (W360 × 134; Fy = 345 MPa)
with a length of 5.67 m and weak axis slenderness ratio of 60.
The column was modeled using shell finite elements, where
its strength limit state is controlled by flexural buckling about
the weak axis. Further details of finite element analyses are
described later.

The AISC design provisions essentially adopt the load
approach concept, where the member resistance under a
specified temperature is obtained by substituting a degraded
modulus of elasticity and yield stress into strength design
equations that are otherwise the same as those applied
at ambient temperatures. This member-based check further
assumes that the loads induced in the member by restraint
to thermal expansion can be independently calculated and
superimposed with other applied load effects. The extent to
Fig. 1. Comparison of temperature and load control analyses.

which this assumption is valid depends on the indeterminate
nature of the structural system and loading — effects that
are not represented in an isolated member analysis. Another
assumption made in the AISC provisions and this study is that
the member strength can be conservatively calculated with a
uniform temperature distribution through the member.

2.1. Steel properties under elevated temperatures

Shown in Fig. 2(a) are idealized stress–strain curves for steel
at elevated temperatures. These curves are based on parameters
specified in EC3 and substantiated by test data collected by
Wainman and Kirby [3] and others. These stress–strain models
are specified through reduction factors (see Fig. 2(b)–(c)),
which are defined for the proportional limit Fp, yield stress Fy ,
and modulus of elasticity E as follows:

K p(T ) =
Fp(T )

Fp0
, K y(T ) =

Fy(T )

Fy0

and KE (T ) =
E(T )

E0
. (1)

The terms in the denominator of Eq. (1), Fp0, Fy0, and E0,
correspond to properties at ambient temperature (20 ◦C), and
those in the numerator, Fp(T ), Fy(T ), and E(T ), are at the
elevated temperature, T . Values of the reduction factors are
summarized in Table 1 and plotted in Fig. 2(c). Referring to
Fig. 2(c), at 600 ◦C the yield strength decreases to about half
its ambient temperature value, while the elastic modulus and
proportional limit decrease more rapidly to about 30% and
20%, respectively, of their ambient values.

Referring back to Fig. 2(a), the bilinear elastic plastic
relationship, which is commonly assumed in idealized
stress–strain models at ambient temperature, disappears as the
material becomes more inelastic under elevated temperatures.
Finite element analyses that employ nonlinear stress–strain
curves (such as in Fig. 2(a)) model directly this behavior.
As described later, the EC3 member design equations for
elevated temperatures take this nonlinear stress–strain response
into account through coefficients that vary nonlinearly with
temperature. On the other hand, the AISC design equations
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Fig. 2. Stress–strain response at high temperatures as defined by EC3, (a) stress–strain curves, (b) key parameters of the stress–strain curve, (c) reduction factors.
Table 1
Stress–strain reduction factors in EC3

Temperature (◦C) Ky(T ) K p(T ) K E (T )

20 1.000 1.000 1.000
100 1.000 1.000 1.000
200 1.000 0.807 0.900
300 1.000 0.613 0.800
400 1.000 0.420 0.700
500 0.780 0.360 0.600
600 0.470 0.180 0.310
700 0.230 0.075 0.130
800 0.110 0.050 0.090
900 0.060 0.038 0.068

1000 0.040 0.025 0.045
1100 0.020 0.013 0.023
1200 0 0 0

only apply reduction factors to the modulus of elasticity and the
yield stress, thereby implying that the bilinear (elastic–plastic)
properties are preserved at high temperatures. As described
later, this assumption of bilinear behavior, which fails to
take into account the graduate softening response, leads
to unconservative results using the AISC member strength
equations for elevated temperatures.

3. Finite element simulation model

Accuracy of the design models is judged against simulation
data of detailed three-dimensional analyses of beam–columns
Fig. 3. Shell finite element mesh and boundary conditions.

using the finite element method (FEM). As shown in Fig. 3,
the steel members are simulated with shell finite element
models created and run using the ABAQUS software [4].
The shell finite element models are well suited to simulating
geometric and material nonlinearity, including global flexural
and torsional–flexural buckling and local flange and web
buckling. The analyses are conducted using the “load approach”
where the critical strength is determined by incrementing the
applied load on a model at various prescribed temperatures. The
following are some features of the models:

1. The member is subdivided into 32 shell elements along
its length, and the flanges and web are each subdivided
into eight elements across the cross section (Fig. 3). Each
element has eight nodes and four Gaussian integration points
in the shell plane with three point Simpson’s rule integration
through the shell thickness.

2. Nonlinear stress–strain curves of steel at the elevated
temperatures are adopted from EC3, as shown in Fig. 2(a).
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Fig. 4. Load versus displacement response from FEM simulations under ambient and elevated temperatures (a) W14×90 column (L/r y = 60 Gr. 50), (b) W14×22
beam (L/r y = 60, Gr. 50).
A uniform temperature distribution is assumed through
the member cross section and along its length. Multiaxial
yielding is modeled through the von-Mises yield criterion.
The yield strengths are assumed to be equal to their nominal
specified values, so as to provide consistent comparisons
with the design models.

3. Linear kinematic constraints are applied to the flanges and
web at the member end so as to enforce planar behavior
within each flange and web but to allow cross-section
warping (Fig. 3). Displacements of the web along the
Y - and Z -axis are restrained at both ends and longitudinal
displacements along the X -axis are restrained at one end.
Twisting rotation (about the X -axis) is restrained at both
ends, and rotational displacements about Y - and Z -axes
(weak and strong axes) are free at both ends.

4. For the column (axial) strength analyses, axial forces are
applied along the kinematically restrained webs and flanges
at one end of the member. In one set of analyses, the flange
ends are free to rotate, thereby permitting flexural buckling
about the Y -axis (weak axis); and in a second set of analyses,
rotational displacements about the Y -axis are restrained in
order to determine the flexural buckling strength about the
Z -axis (strong axis).

5. For the beam (flexural) strength analyses, a concentrated
force couple is applied at the center of the upper and
lower flanges at each end so as to induce a uniform strong
axis moment along the beams. The kinematic constraint
across the flanges ensures a uniform distribution of flexural
stresses.

6. Initial geometric member “sweep” imperfections are
modeled by introducing a single sinusoidal curve along the
member length, with a maximum initial displacement of
1/1000 of the length at the mid-span.

Shown in Fig. 4 are example FEM simulation results for a
laterally unsupported column and beam at ambient and elevated
temperatures (20, 500, and 800 ◦C). Column results (Fig. 4(a))
are shown in terms of the normalized axial load versus midspan
deflection for a W14×90 column with a slenderness of L/ry =

60, where L is the length and ry is radius of gyration about
weak axis. The critical strength at 500 ◦C is about 50% of
that at room temperature. This 50% reduction is in contrast to
the three material reduction factors of K y (500 ◦C) = 0.78,
K p (500 ◦C) = 0.36 and KE (500 ◦C) = 0.60, whose
range of values suggests that all three parameters, including the
change in proportional limit, play a role in the member strength
reduction. At 800 ◦C the strength is about 8% of that at room
temperature, which is in contrast to three material reduction
factors of K y (800 ◦C) = 0.11, K p (800 ◦C) = 0.05 and
KE (800 ◦C) = 0.09. The results for 800 ◦C are intended as
an upper bound on the temperature response, since the large
strength reduction at this temperature suggests that the practical
value of calculating the strength at this temperature is limited.
The beam data (Fig. 4(b)) are for a W14×22 beam with a lateral
slenderness of L/ry = 60 subjected to a uniformly distributed
strong-axis moment. Here, the strengths reductions at elevated
temperatures are slightly less than for the column, suggesting
that the beam behavior is more dependent on the reduction in
yield strength and less on the reduction in proportional limit.
In these two examples, the arc-length (Riks) solution method is
used to track the post-peak response. For the parametric studies
shown later, where only the peak strength is reported, the finite
element analyses were run under load control up to the critical
strength limit state. This was done as a practical measure to
reduce the analysis run times.

Analyses were also conducted to assess the effects
of thermally-induced residual stresses and cross-section
imperfections on critical loads. Residual stresses were
introduced with the distribution shown in Fig. 5(a), assuming
a peak residual stress at ambient temperature of Fr0 = 69 MPa
(10 ksi). Under elevated temperatures the peak residual stresses
are assumed to reduce in proportion to the reduction in yield
stress, i.e., Fr (T ) = K y(T )Fr0. Shown in Fig. 5(b) are critical
column strengths obtained from simulations run with and
without residual stresses at an elevated temperature of 500 ◦C.
The largest difference occurs at a slenderness of about L/ry =

100, where the residual stresses reduce the critical calculated
load by less than 15%. Residual stresses are modeled in this
same way for the subsequent parametric analyses presented
later.

While the primary focus of this study is on compact or
near-compact sections, the significance of local flange or web
buckling and local geometric imperfections was considered.
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Fig. 5. Influence of residual stresses: (a) residual stress pattern, (b) critical weak-axis buckling strength of W14 × 90 Gr. 50 column at 500 ◦C.
Previous research has reported that local buckling is not
particularly critical at elevated temperatures for structural
sections, for which local buckling is not critical at ambient
temperature [5–7]. This observation is corroborated by this
study where local buckling was only observed as governing
the strength limit state in a few of the FEM analyses of very
short columns where the web width–thickness ratios exceed
the AISC requirements for compact column sections. To help
assess the significance of local geometric imperfections, a
W14 × 90 (Grade 50) column of varying slenderness was
analyzed with and without local imperfections at an elevated
temperature of 500 ◦C. The local imperfections were defined
by scaling the first-mode local buckling shape, obtained by a
linear buckling analysis, to a maximum amplitude of 1/1000
of the local buckling length (equal to a peak flange and web
imperfection of about 0.5–0.8 mm). Strength deterioration due
to the local imperfection was only observed for the shorter
members (lengths of 3.1 m for flexural buckling about the
strong axis and 1.9 m for flexural buckling about the minor
axis), where the maximum difference in critical strengths for
analyses with and without the imperfection are 5% and 3%
for flexural bucking about strong and weak axes, respectively.
Thus, these analyses support the assumption that the member
strengths are no more sensitive to local buckling at elevated
temperatures as compared to ambient temperatures, and the
response of compact (and near-compact) sections are fairly
insensitive to local geometric imperfections.

4. Column strength assessment

Many numerical and experimental studies have been
carried out on the behavior of steel columns under elevated
temperatures [8–12]. Franssen et al. [13] used finite element
techniques to numerically simulate column response under
elevated temperatures and proposed new column design
equations for EC3. Talamona et al. [14] and Franssen et al.
[15] subsequently performed comprehensive analytical studies
to investigate the critical temperatures for various I-shaped
sections with varying slenderness ratios, yield stresses, member
orientations, axial loads, and loading eccentricities. They used
the critical axial column strengths from these analyses to
confirm the proposed design equations by Franssen et al. [13].
The EC3 column design equations [1] have since been modified
to incorporate the proposed revisions. These prior studies
provide the impetus for this current study to independently
assess the nominal strength provisions of the latest EC3 (2003)
standard and the new AISC (2005) specification.

4.1. AISC column strength equations

The nominal column strength Pcr0,AISC of the AISC
specification at ambient temperature is calculated as follows:

For Fy0 ≤ 2.25Fe0 Pcr0,AISC =

[
0.658

Fy0
Fe0

]
AFy0 (2)

For Fy0 > 2.25Fe0 Pcr0,AISC = 0.877AFe0 (3)

where

Fe0 =
π2 E0( K L

r

)2 (4)

where, Fy0 and E0 are the yield stress and elastic modulus; Fe0
is elastic buckling stress, given by Eq. (4); and A, r , and K are
cross-sectional area, radius of gyration, and effective buckling
length factor, respectively.

The AISC equations for calculating the critical load at ele-
vated temperatures, Pcr,AISC(T ), are identical to Eqs. (2)–(4),
except that the elastic modulus and yield strength terms are re-
placed by their temperature dependent counterparts, E(T ) and
Fy(T ), which are determined using the EC3 reduction factors
of Eq. (1) and Table 1.

4.2. EC3 column strength equations

The EC3 column strength Pcr0,EC3 at ambient temperature is
calculated as follows:

Pcr0,EC3 = χ0 Py0 (5)

χ0 =
1

ϕ0 +

√
ϕ2

0 − λ
2
0

≤ 1.0 (6)

ϕ0 = 0.5
[
1 + α

(
λ0 − 0.2

)
+ λ

2
0

]
(7)

λ0 =

√
Fy0

Fe0
(8)
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Table 2
Steel section data

Section h (mm) tw (mm) b f (mm) t f (mm) h/tw b f /2t f Ix /Iy

W14 × 90 356 11.2 369 18.0 25.9 10.3 2.8
W14 × 22 349 5.8 127 8.5 53.7 7.47 28.4
HEA100 96 5 100 8 19.2 5.0 2.5
where α is an imperfection factor, which varies from 0.13 to
0.76 depending on the member properties, such as buckling
orientation (i.e. about the weak axis or strong axis), web height
to flange width ratio, flange thickness, and yield stress. λ0 is
a slenderness ratio that is given by Eq. (8) for stocky sections
(i.e. Class 1, Class 2, or Class 3 cross-sections, as defined in
EC3) and the other parameters are as defined previously. One
of the notable differences between the AISC and EC3 equations
is that the critical load in EC3 depends on the slenderness ratio,
buckling axis, and cross section properties, whereas the AISC
strength only varies with respect to the flexural slenderness
ratio, K L/r .

Design equations at elevated temperatures in EC3 are similar
to the ones at ambient temperature, but with a few important
differences. Equations for critical load Pcr,EC3(T ) are the same
as Eqs. (5) and (6), except that the yield strength of Eq. (5) is
replaced by its temperature dependent counterpart, Py(T ), as
specified using the yield strength reduction factor of Table 1
and Fig. 2(c). At elevated temperatures, χ(T ) is calculated by
Eq. (6) but with the following temperature dependent
parameters that replace the expressions in Eqs. (7) and (8):

ϕ(T ) = 0.5
[
1 + αλ(T ) + λ

2
(T )

]
(9)

λ(T ) = λ0

√
K y(T )

KE (T )
(10)

α = 0.65
√

235/Fy0 (11)

where λ0 is as specified in Eq. (8) and K y(T ) and KE (T ) are
the reduction factors of Table 1 and Fig. 2(c).

4.3. Assessment of column strengths

The AISC and EC3 column strength equations are compared
to FEM simulations of two column sections under various
temperatures and slenderness ratio. The columns consist of
W14 × 22 and W14 × 90 sections with Gr. 50 and 36 steels
(W360 × 32.9 and W360 × 134 sections with Fy = 345 MPa
and 250 MPa). Member section properties are summarized in
Table 2, where h, tw, b f and t f are the height, web thickness,
flange width and flange thickness, respectively. As is evident
from the ratio of strong to weak axis moment of inertia, Ix/Iy ,
the W14 × 22 represents a beam type geometry, whereas
the W14 × 90 represents a column geometry. Per EC3, the
imperfection factors for these cross sections are αx = 0.21 and
αy = 0.34.

The AISC characterizes column cross sections by the width
to thickness ratios of the flanges and webs to denote the
transition between sections that are expected to be controlled by
local flange or web buckling prior to section yielding. Referring
to Table 2, both of the W14 sections satisfy the AISC criteria
for compact flanges of b f /2t f < 13.5 and 15.8 for Gr. 50 and
36 steel, respectively. On the other hand, the web slenderness
of the W14 × 22 section (h/tw = 53.7) exceeds the limiting
AISC compactness criteria of h/tw = 35.9 and 42.1 for Gr. 50
and 36 steel, respectively. Therefore, these data indicate that
the W14 × 22 is expected to be sensitive to local web buckling
at high stresses, whereas other local buckling modes should
not affect the results. These two W14 sections are intended to
represent the range of behavior for rolled wide-flange members
encountered in design practice.

Superimposed in Fig. 6(a) are FEM simulation results
and nominal strengths calculated according to the AISC
and EC3 provisions for the W14 × 90 (Gr. 50) column at
ambient temperature. These results are shown as a benchmark
against which to judge the differences in the models at
elevated temperatures. Critical strengths of members were
investigated for elevated temperature increments of 100 ◦C up
to 800 ◦C. Representative results are shown in Fig. 6(b)–(d)
for temperatures of 200, 500 and 800 ◦C. As noted previously,
the results at 800 ◦C have limited practical impact but
are included to show the bounds of response. Simulation
(ABAQUS) results are shown for both strong and weak axis
buckling for slenderness ratios from 20 to 200. Compared
to the ambient temperature case, the differences between
simulated results for strong versus weak axes decrease at
higher temperatures. Clearly evident in these figures is that
the AISC strength equations are unconservative at elevated
temperatures, particularly for slenderness ratios between 40 and
100 and temperatures above 500 ◦C. For instance, referring to
the strength ratio comparisons in Fig. 7, at 500 ◦C the nominal
strengths calculated by the AISC provisions are up to 60%
larger than the critical strengths as calculated by simulation.
On the other hand, the EC3 column strength equations match
the simulated results within about 20%.

4.4. Proposed column strength equations

Motivated by the large discrepancy between the AISC
provisions and the simulated results, the authors developed an
alternative column strength equation that is similar in format to
the AISC equations but with greatly improved accuracy at high
temperatures. The proposal is to use the following equation for
elevated temperatures in lieu of Eqs. (2) and (3):

Pcr,Prop(T ) =

[
0.42

√
Fy (T )

Fe(T )

]
AFy(T ) (12)
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Fig. 6. Critical compressive strengths of W14 × 90 Gr. 50 column, (a) ambient temperature, (b) 200 ◦C, (c) 500 ◦C, (d) 800 ◦C.
Fig. 7. Percent error in the calculated compression strength of W14×90 Gr. 50
column at 500 ◦C.

where

Fe(T ) =
π2 E(T )( K L

r

)2 . (13)

This equation is similar to the AISC equation (2) but with a
different coefficient and exponent. Like the AISC equations,
this model utilizes the EC3 reduction factors to calculate Fy(T )

and E(T ). As compared with other data in Figs. 6(b)–(d) and
7, the nominal strength by the proposed equations track the
simulation data fairly well, closer in fact that than the EC3
equations at temperatures greater than 300 to 400 ◦C, where
structural fire analyses are important.
4.5. Column test data

To further substantiate these analyses, results of the finite
element simulations and nominal strengths are compared to
test data reported by Franssen et al. [15]. The column tests
were of a HEA100 section, whose sizes are shown in Table 2.
Data for five column tests at varying temperatures and lengths
are summarized in Table 3 along with results from finite
element simulations and the three nominal equations (AISC,
EC3, and the newly proposed equations). Measured steel yield
strengths at ambient temperature (as reported by Franssen et al.)
were used for Fy0 in the analytical simulations and strength
equations. Flexural buckling about the weak axis was the
dominant mode of failure in all cases. Referring to Table 3,
four of the five finite element simulations predict strengths
within 3% of the measured strengths, thus confirming the
validity of the simulations as a basis for evaluating the design
models. Critical strengths calculated by EC3 are all within
30% of the test data, whereas those by the AISC equations
are unconservative by up to 65%. Strengths predicted using the
proposed equations are within 10% of the measured test data.

4.6. Influence of yield strength and section geometry

Results of analyses to examine the influence of yield strength
and section properties are shown in Fig. 8(a)–(b). Comparing
Fig. 8(a) to 6(c), the trends in both the simulation and relative
accuracy of the design equations is essentially the same for
Gr. 36 as Gr. 50 steel. The influence of section proportions
(W14 × 22 versus W14 × 90) is seen by comparing Figs. 8(b)
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Table 3
Measured and calculated strengths of column tests

Test name L/ry T (◦C) Pcr (kN) (Pcr/Pcr,Test)

Test FEM AISC EC3 Proposed

CL1 20 694 110 107 (0.97) 142 (1.29) 123 (1.12) 112 (1.02)
CL3 50 474 251 244 (0.97) 414 (1.65) 320 (1.27) 277 (1.10)
SL40 79 525 170 143 (0.84) 250 (1.47) 177 (1.04) 159 (0.94)
AL5 108 457 127 131 (1.03) 198 (1.56) 145 (1.14) 138 (1.09)
BL6 137 446 105 103 (0.98) 125 (1.19) 104 (0.99) 100 (0.95)
Fig. 8. Comparative assessment of column compression strength at 500 ◦C (a) W14 × 90 Gr. 36, (b) W14 × 22 Gr. 50.
and 6(c). For the W14 × 22 only minor axis flexural buckling
is considered due to the large difference in strong versus weak
axis properties. In Fig. 8(b) the effect of web slenderness web
in the W14 × 22 is apparent, where the simulated results
drop off compared to the design equations at low slenderness
(L/r < 30) where the critical stress exceeds about 0.6Fy(T ).
This occurs because at these stress levels local web buckling,
which is not reflected in the column strength equations, begins
to control the critical strength. It turns out that for this column,
these discrepancies are not of much practical significance since
the column length corresponding to L/r = 30 is only 0.80 m.
Except for these cases where web buckling is critical (and is
expected based on the fact that the h/tw exceeds the AISC
limit for compact webs), the critical strengths agree well with
the proposed equation. Additional analyses of the W14 × 22
section at other temperatures confirm that the critical web
buckling stress of about 0.6Fy(T ) is fairly constant across
various temperature ranges.

5. Beam strength assessment

Design equations for laterally unsupported beams require
evaluation of torsional–flexural instability effects, which for I-
shaped sections involves consideration of non-uniform torsion
and warping restraint. Compared to columns and laterally
supported beams, there are relatively few studies of laterally
unsupported beams under fire conditions. Bailey et al. [16]
studied the critical temperatures for several beam sections with
different loading patterns and commented that the then current
EC3 provisions were unconservative for laterally unsupported
beams. Piloto and Vila Real [17] performed an experimental
study of electronically heated beams and reported that the
measured critical temperatures were scattered and generally
higher than the theoretical or design temperatures. They
attributed the variations to the complexity of the phenomena
and the difficulty in conducting the experiments. Vila Real
et al. [18–20] numerically studied the critical temperatures and
strength for various loading patterns, from which they proposed
alternative design equations that were later incorporated in
EC3 [1].

Building upon prior research, analytical results for laterally
unsupported beams are compared with design equations of
the AISC and EC3 specifications, similar to the column
comparisons. As in the column study, the large discrepancy
between the AISC strength equations and simulation results
prompted the proposal of alternative equations for evaluating
beams at elevated temperatures.

5.1. AISC beam strength equations

The AISC equations for beam strength at ambient
temperature are given by the following equations, where Mp0 is
the plastic moment and Mr0 is the initial yield moment (reduced
to account for residual stresses), E0 and G0 are the elastic
moduli, J is the torsional constant, Cw is the warping constant,
and λ is the slenderness ratio (=L/ry):

For λ ≤ λp0 Mcr0,AISC = Mp0 (14)
For λp0 < λ ≤ λr0

Mcr0,AISC = Mp0 − (Mp0 − Mr0)

(
λ − λp0

λr0 − λp0

)
(15)
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For λ > λr0

Mcr0,AISC =
π

λry

√
E0 IyG0 J + IyCw

(
π E0

λry

)2

. (16)

The slenderness ratios, λp0 and λr0, correspond to the
transitions between full plastic bending capacity, inelastic
lateral–torsional buckling, and elastic lateral–torsional buck-
ling, represented by Eqs. (14), (15) and (16), respectively. λp0
is determined from empirical data, while λr0 corresponds to
the theoretical slenderness where the critical elastic buckling
moment, per Eq. (16), is equal to the initial yield moment Mro.
The critical moment for elastic lateral torsional buckling with
Eq. (16) is theoretically derived (Timoshenko and Gere [21])
and that for inelastic buckling with Eq. (15) is a linear inter-
polation between the transition points with Eqs. (14) and (16).
These transition points are calculated by the following equa-
tions, where Sx is the elastic section modulus about the strong
axis and the other terms are as defined previously:

λp0 = 1.76

√
E0

Fy0
(17)

λr0 =
X10

FL0

√
1 +

√
1 + X2 F2

L0 (18)

Mr0 = Sx FL0 (19)

where

X10 =
π

Sx

√
E0G0 J A

2
(20)

X2 = 4
Cw

Iy

(
Sx

G J

)2

(21)

FL0 = 0.7Fy0. (22)

As specified in AISC [2], the critical moment under elevated
temperatures Mcr,AISC(T ) is obtained from Eqs. (14) to (21) by
modifying E, G and Fy using the reduction coefficients KE (T )

and K y(T ).

5.2. EC3 beam strength equations

The EC3 beam strength equations at ambient temperature
have a similar format to the EC3 column equations:

Mcr0,EC3 = χLT 0 Mp0 (23)

χLT 0 =
1

ϕLT 0 +

√
ϕ2

LT 0 − λ
2
LT 0

≤ 1.0 (24)

where

ϕLT 0 = 0.5
[
1 + αLT (λLT 0 − 0.2) + λ

2
LT 0

]
(25)

λLT 0 =

√
Mp0

Mcr0,e
(26)

Mp0 = Zx Fy0 (27)
and χLT 0 is the reduction factor for lateral torsional buckling,
αLT is an imperfection factor which depends on the section
proportions (αLT = 0.21 is used for rolled sections with the
web height to flange width ratio h/b f ≤ 2 and αLT = 0.34
for h/b f > 2), Mcr0,e is the elastic critical moment for lateral
torsional buckling, and Zx is the plastic modulus about the
strong axis. Eq. (26) is specified for compact sections, which
correspond to the Class 1 or Class 2 designations in EC3.

Differences between the beam equations in EC3 under fire
conditions and at ambient temperature are similar to those
between the corresponding column equations. The primary
changes are in the definition of ϕLT , αLT , and λLT , which are
defined for elevated temperatures by the following equations
that replace Eqs. (25)–(27):

ϕLT (T ) = 0.5
[
1 + αLT λLT (T ) + λ

2
LT (T )

]
(28)

αLT = 0.65
√

235/Fy0 (29)

λLT (T ) = λLT 0

√
K y(T )

KE (T )
. (30)

Note that Fy0 carries units of MPa in Eq. (29).

5.3. Proposed beam strength equations

As an alternative to the AISC beam strength equations, the
following equations are proposed to evaluate bending strengths
at elevated temperatures using a similar format to the AISC
design equations:

For λ ≤ λr (T ) Mcr,Prop(T ) = Mr (T )

+ [Mp(T ) − Mr (T )]

(
1 −

λ

λr (T )

)CX (T )

(31)

For λ > λr (T ) Mcr,Prop(T )

=
π

λry

√
E(T )IyG(T )J + IyCw

(
π E(T )

λry

)2

. (32)

In contrast to the equations at ambient temperature where
the design equations are distinguished into three regions of
behavior, here only two equations are used to model inelastic
and elastic lateral–torsional buckling. As will be shown later,
these equations reflect that fact that at elevated temperatures
the critical moment drops off quickly from the plastic moment
at small slenderness values. The distinction between inelastic
and elastic behavior is indicated by the slenderness value
λr (T ), which corresponds to the elastic moment at the onset
of yielding, Mr (T ). The governing equations for λr (T ) and
Mr (T ) are the same as the AISC values, Eqs. (18)–(22) with
reduced yield stress and elastic modulus, except that the initial
yield stress FL is replaced by the following:

FL(T ) = Fp(T ) − Fr (T ) (33)
Fp(T ) = K p(T )Fy0 (34)
Fr (T ) = K y(T )Fr0. (35)

Compared to the original AISC equations, the major change is
to base FL(T ) on the temperature dependent proportional limit
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Fig. 9. Critical bending moment strengths of W14 × 22 Gr. 50 beam, (a) ambient temperature, (b) 200 ◦C, (c) 500 ◦C, (d) 800 ◦C.
Fp(T ) rather than the yield stress. Fr0 is the residual stress at
the ambient temperature, which is specified in AISC as Fr0 =

69 MPa for rolled shapes. Implied in Eq. (35) is the assumption
that the residual stresses under elevated temperatures are
proportional to the reduction factor of yield strength, K y(T ).
The term CX (T ) in Eq. (31) is an exponent that is defined as
a bilinear function with respect to the temperature according to
the following equation for T > 100 ◦C,

CX (T ) = 0.6 +
T

250
≤ 3.0 (36)

where T carries units of ◦C.

5.4. Assessment of beam strengths

Comparisons between the simulated results and design
equations for bending strength are shown in Figs. 9 through 11.
Simulated results for a W14×22 Gr. 50 (Fy = 345 MPa) beam
of varying lateral slenderness are compared to the AISC and
EC3 equations at ambient temperatures in Fig. 9(a). As in the
column analyses, the simulated points correspond to the peak
point in load versus deflection curves, such as shown previously
in Fig. 4(b). The comparison in Fig. 9(a) demonstrates that
even at ambient temperatures, the AISC flexure equations tend
to be unconservative relative to the simulated results and EC3
equations. In this example, the maximum error occurs at an
intermediate slenderness, λ = 100, where the AISC strength
is about 30% larger than the simulated results.

Strengths for the W14 × 22 beam at elevated temperatures,
200, 500 and 800 ◦C, are compared in Fig. 9(b)–(d). Included
are the FEM simulation results and the nominal strengths
calculated by the three design equations (AISC, EC3, and
the proposed model). Immediately apparent from these
comparisons are the large discrepancies between the AISC
equations and the simulated results. Referring to Fig. 10, at
500 ◦C the largest percentage differences occur for intermediate
slenderness values of λ = 80–100, where the AISC
strengths are about 80% higher than the simulated strengths
at temperatures. In part, the discrepancies arise because at
elevated temperatures the simulated results indicate that the
moment strength drops off quickly with increasing slenderness,
whereas the AISC equations preserve the plastic moment,
Mp(T ), up to about λ = 40. In contrast to the AISC equations,
the EC3 model tracks the simulated results fairly well.

As indicated previously, the new equations proposed by
the authors are intended to provide good accuracy while
maintaining a similar concept and format to the AISC
equations. One of the basic features of the proposed model
is that it preserves use of the elastic critical load at high
slenderness values. At lower temperatures (e.g., 200 ◦C)
the transition between the inelastic and elastic response, at
λ = 110, is quite abrupt. At higher temperature, as the
proportional limit is reduced through K p(T ), the inelastic curve
controls over a larger range of slenderness. As evident from
Figs. 9(c)–(d) and 10, at above about 300 ◦C results from
the proposed model and the EC3 model are quite similar and
agree well with the simulation data. The proposed model is
less conservative than the EC3 equations at lower temperatures
(e.g., 200 ◦C in Fig. 9(b)), owing to the desire to maintain
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Fig. 10. Percentage error in the calculated bending moment strength of W14 ×

22 Gr. 50 beam at 500 ◦C.

close conformance with the AISC relationships at ambient
temperature.

Results shown in Fig. 11 illustrate that the trends observed in
Fig. 9 for the W14×22 Gr. 50 beam are generally representative
of other yield strengths and section properties. Results for Gr.
36 steel (Fy = 250 MPa) at 500 ◦C are shown in Fig. 11(a).
Here the effect of the residual stresses (assumed at Fr0 =

69 MPa at ambient temperature) are proportionally larger for
the Gr. 36 steel, and the increased softening effect leads to
closer agreement between the EC3 and proposed equations, as
compared to the results shown in Fig. 9(c) for Gr. 50 steel.
Results for a W14 × 90 Gr. 50 beam at 500 ◦C are shown in
Fig. 11(b) . In this case, the strengths calculated by the EC3
and proposed models agree very well with the simulated results
up to about λ = 100. At higher slenderness these two models
tend to underestimate the critical load, because the proportions
of the W14 × 90 (smaller Ix/Iy ratio) are such that the in-
plane pre-buckling deformations tend to increase the critical
load. This beneficial effect of in-plane deflections is picked up
in the simulation but not in the critical load equations. Overall,
the results in Fig. 11 confirm that the EC3 and the proposed
models provide accurate results for the typical range of steel
shapes and yield strengths used in practice.

6. Beam–column strength assessment

Laterally unsupported beam–columns subjected to com-
bined axial compression and strong axis bending experience
combined limit states of yielding, lateral buckling and lat-
eral torsional buckling. As with laterally unsupported beams,
there are relatively few studies of design equations for
beam–columns under fire conditions. Lopes et al. [22] com-
pared numerical simulations to equations in the 1995 and 2003
editions of EC3 and confirmed that the 2003 provisions are
more accurate and conservative than the 1995 provisions. Toh
et al. [11] proposed an approach to find combinations of the crit-
ical axial force and bending moment using Rankin’s method. In
the following discussion, results of the present study of columns
and beams is extended to evaluate the AISC and EC3 design
equations for beam–columns subjected to axial load and major-
axis bending.

6.1. AISC beam–column strength equations

The AISC beam–column strength equations employ a
simple bilinear combination of the ratio of axial and bending
effects. As given by the following, the equations for elevated
temperatures are identical to those at ambient temperatures
except that the nominal strengths are calculated at elevated
temperatures:

For
Pu

Pcry,AISC(T )
≥ 0.2

Pu

Pcry,AISC(T )
+

8
9

Mux

Mcrx,AISC(T )
≤ 1.0 (37)

For
Pu

Pcry,AISC(T )
< 0.2

Pu

2Pcry,AISC(T )
+

Mux

Mcrx,AISC(T )
≤ 1.0 (38)

where Pu and Mux are the factored axial load and
bending moment about the strong axis and Pcry,AISC(T ) and
Mcrx,AISC(T ) are the critical axial strength for flexural buckling
and the critical bending moment for lateral torsional buckling,
respectively. Assuming the member to be pin-ended about both
axes, the column strength Pcry,AISC(T ) is controlled by flexural
buckling about the weak axis. Per the AISC Specification, Mux
should include second-order effects. For the pin-ended column
subjected to uniform end moments, Mx,end, the second-order
Fig. 11. Comparative assessment of beam bending moment strength at 500 ◦C (a) W14 × 22 Gr. 36, (b) W14 × 90 Gr. 50.
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Fig. 12. Critical axial load and moment strengths of W14 × 90 Gr. 50 (λ = 60) beam–column, (a) 200 ◦C, (b) 500 ◦C, (c) 800 ◦C.
moment at the mid-span is calculated as:

Mux (T ) =
Mx,end

1 − Pu/Pcr,e(T )
(39)

where

Pcr,e(T ) =
π2 E(T )A

λ2 . (40)

According to Eq. (39), the second-order amplification factor is
calculated based on the critical load determined using E(T ) and
per Eq. (1).

6.2. Proposed beam–column strength equations

The proposed equations employ the same interaction check
and amplification factor as the AISC equations, except that
the nominal strength terms, Pcry,Prop(T ) and Mcry,Prop(T ), are
calculated according to the newly proposed equations.

6.3. EC3 Beam–column strength equations

The EC3 beam–column equations for combined axial load
and bending moment are as follows:

Pu

Pcry,EC3(T )
+ kLT (T )

Mux (T )

Mcr,EC3(T )
≤ 1.0 (41)

where,

Pcry,EC3(T ) = χy(T )Py(T ) (42)
kLT (T ) = 1 − µLT (T )
Pu

Pcry,EC3(T )
(43)

µLT (T ) = 0.165λy(T ) − 0.15 ≤ 0.9 (44)

where Pu and Mux (T ) are the factored axial load and
bending moment about the strong axis and Pcr,EC3(T ) and
Mcr,EC3(T ) are the critical axial strength for flexural buckling
and the critical bending moment for lateral torsional buckling,
respectively, and other terms are as defined previously. Note
that Eq. (44) for µLT (T ) is shown in simplified format for a
pin-ended beam–column subjected to uniform end moments.

6.4. Assessment of beam–column strengths

The same FEM analysis model used for the column and
beam studies is used for beam–column study, including non-
uniform torsion and warping restraint effects. The limit state
combinations of axial load versus end moment are compared in
Fig. 12 for a W14×90 (Gr. 50) member with λ = 60 at various
elevated temperatures. The curve in the AISC and proposed
equations is due to the second-order effects in Mux (T ) per
Eq. (39). In general both the EC3 and proposed equations show
good agreement with the simulated results. It is difficult to
say whether the bi-linear or linear interaction equations are
more appropriate, since much of the accuracy of the interaction
check depends on the accuracy of the nominal axial load and
moment strength. Following the previous discussion of the axial
load and moment strengths, the AISC provisions at elevated
temperatures are highly unconservative relative to the simulated
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Fig. 13. Comparative assessment of beam–column strengths at 500 ◦C (a) W14 × 9043 Gr. 36, (b) W14 × 22 Gr. 50.
results and other design equations. The errors are larger for
bending dominated (as opposed to axial dominated) members,
owing to the underlying errors in the Mcr,AISC(T ) equations
discussed previously.

Results in Fig. 13 illustrate similar results for a lower yield
steel strength and alternative steel section. Comparing Figs.
12(b) and 13(a), the differences between Gr. 50 and Gr. 36
steel at 500 ◦C indicate that results from the simulation, EC3
and proposed equations tend to converge for Gr. 36 steel,
presumably because the residual stresses and non-proportional
limit are closer together. Conversely, the AISC results, which
do not take into account the reduced proportional limit lose
accuracy for Gr. 36. Comparing Figs. 12(b) and 13(b), the
differences between the W14 × 90 to W14 × 22 sections lead
to minor changes that can be traced back to differences in the
axial load and moment strengths.

7. Summary and conclusions

Codified design equations for steel members subjected to
high temperatures are an important step towards facilitating
consensus standards to evaluate the structural safety of
buildings to fire. Incorporation of fire provisions in structural
design standards also raises awareness of the issues and
has encouraged research and development to validate and
improve the provisions. Design equations first introduced in the
Eurocode EC3 standard in 1992 were subsequently updated and
improved through studies by a number of researchers. Similar
design requirements have only recently been introduced in a
new appendix to the 2005 AISC Specification.

The results summarized herein provide an independent as-
sessment of the EC3 and AISC provisions for columns, laterally
unbraced beams, and laterally unbraced beam–columns, which
are compared to data from detailed nonlinear finite element
analyses. Utilizing three-dimensional shell finite elements, the
numerical simulations incorporate the effects of local and
overall buckling and instability, including non-uniform tor-
sion and warping restraint effects. The simulation results are
not entirely independent of the design standards, since the
simulation models are based on stress–strain data at elevated
temperatures that is specified in EC3 and referenced in AISC.
However, through comparisons between the EC3 stress–strain
models and test data of steel at elevated temperatures and col-
umn tests, the authors have reaffirmed the accuracy of the EC3
stress strain data. The simulation study included about four
hundred finite element analyses, including the effects of vary-
ing slenderness, steel temperature, steel yield strength, residual
stresses, and section properties.

Comparison between the AISC provisions and the simu-
lation results indicate that the AISC provisions significantly
over-estimate the nominal strength of columns, beams and
beam–columns at elevated temperatures. The AISC column
strengths were up to 60% higher than the simulated results, and
the beam and beam–column strengths were 80%–100% higher.
These large discrepancies indicate that the approach used in
the AISC provisions of simply modifying the elastic moduli (E
and G) and yield strength (Fy) in the otherwise standard (ambi-
ent temperature) design equations is inaccurate. Thus, the large
variations are due primarily to the fact that the steel stress–strain
curve loses its characteristic bi-linear elastic–plastic response
at elevated temperatures. Comparisons between the EC3 pro-
visions and simulation results indicate that the EC3 equations
are within 20% of the simulations. This good agreement reflects
refinements made to the EC3 provisions since their first publi-
cation.

While it would be tempting to simply recommend that
the EC3 provisions be adopted into the AISC Specification,
the format of the EC3 provisions is quite different from the
AISC ambient strength design provisions. In the interest of
maintaining similarity in format and style between ambient
and elevated temperature provisions in the AISC Specification,
new design equations are proposed as alternatives to those
in the 2005 edition of the AISC specification. The proposed
alternative equations for calculating the nominal column and
beam strengths are validated against the simulation data and
reduce the discrepancies to less than about 20%–30%, which
is similar to the accuracy of the EC3 provisions. While
similar in format, the proposed equations are distinct from the
AISC provisions for ambient temperatures, and thus there is
a discontinuity in response between the two sets of equations.
The proposed equations are only intended for use at elevated
temperatures, which can be assumed as temperatures higher
than 200 ◦C, a temperature that would rarely if ever be exceeded
except under fire conditions.
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8. Limitations and future research

While this study helps to both validate and improve
current design provisions for steel members at elevated
temperatures, the scope is limited to assessment of individual
members comprised of bi-symmetric I-shaped members with
compact (or near-compact) sections. The current study
treats the problem deterministically, using nominal properties
(material strengths, initial imperfections, etc.) and nominal
high-temperature material response parameters from EC3,
whereas the actual conditions involve considerable uncertainty.
Moreover, the current study assumes a uniform temperature
distribution through the member cross section, which may
not be conservative for slender members where non-
uniform temperatures can induce member deformations that
may accentuate destabilizing geometric nonlinear effects,
i.e., moments induced by P–δ action (e.g., see Wang [5]).
Finally, the current study is limited to evaluating the structural
response, conditioned on the induced fire temperature, which
ignores the challenges and large uncertainties in predicting the
elevated temperatures and other fire effects.

Among the many areas that are ripe for future research
and development, two areas most in need of further
study are reliability analysis of uncertainties and the
evaluation of indeterminate system response. The first
of these should address a broader range of design and
response parameters, including variations in cross-section
types, thermal and mechanical loading intensities and
distributions, material properties at ambient and elevated
temperatures, and temperature induced distortions. The second
topic would extend the assessment of individual components
to assess collapse safety of indeterminate systems, considering
the nonlinear redistribution of forces and the associated
uncertainties in loading and response effects.
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